

DEVELOPMENT OF A GEOSPATIAL DATA-SHARING METHOD FOR

UNMANNED VEHICLES BASED ON THE JOINT ARCHITECTURE FOR
UNMANNED SYSTEMS (JAUS)

By

CARL PRESTON EVANS, III

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2005

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Development of a Geospatial Data-Sharing Method for Unmanned
Vehicles Based on the Joint Architecture for Unmanned Systems (JAUS)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center for Intelligent Machines and Robotics,Department of Mechanical
Engineering,University of Florida,Gainesville,FL,32611

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

132

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright 2005

by

Carl Preston Evans, III

“It is difficult to say what is impossible, for the dream of yesterday is the hope of today
and the reality of tomorrow.”

—Dr. Robert H. Goddard

To my grandparents, Lottie and James Patterson, for their never-ending, unconditional
love, and support of me. Because of them, I have been able to see and do things that they

were unable to. In the words of the great Albert Einstein, I have seen farther because
they have allowed me to stand on their shoulders.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my committee chair (Dr. Carl D. Crane

III) for his patience with me during the process of finishing this work, and for giving me

the great opportunity to study and do my master’s research at the University of Florida’s

Center for Intelligent Machines and Robotics. Dr. Crane and I have had a professional

relationship since 2000, when we met at a Joint Architecture for Unmanned Systems

(JAUS) working group meeting. I look forward to a continued professional relationship

as we continue to research the vast field of autonomous systems. Thanks also go to my

other committee members (Drs. John Schueller and Christopher Neizrecki) for their

valuable contributions to this study.

Thanks also go out to Mr. Dan Deguire, Project Manager in Foster-Miller’s Design

and Systems Integration (DSI) Group. I had the honor of working for Dan for

two-and-a-half years, starting as a co-op student and ending as a Design Engineer. While

at Foster-Miller, Dan funded my first foray into obstacle detection and autonomous

navigation (my undergraduate senior design project). I appreciate the friendship that we

continue to share.

Special thanks go out to the Center for Intelligent Machines and Robotics

(CIMAR) Team CIMAR; competitors in the inaugural Defense Advanced Research

Projects Agency (DARPA) Grand Challenge held in March 2004. I particularly those

who were on (or otherwise contributed to work of) the perception team: Mel Torrie,

v

Sarah Gray, Kristopher Klingler, Charles Smith, Sanjay Solanki, Danny Kent, Erica

Zawodny-McArthur, and Donald McArthur.

Thanks also go out to the members of the JAUS World Model Subcommittee for

making each of my meetings feel like a thesis defense. Their valuable suggestions helped

to shape this document, particularly Chapter 4.

I thank Chad Tobler (a friend and biker buddy, late in my years at CIMAR) for

keeping me sane and for providing valuable insight during the writing of this study.

Thanks also go to my great friend Matthew Bokach from the School of Natural

Resources and Environment at the University of Florida. I thank him for being there for

me in many ways both personally and professionally. I especially appreciate his help

with this study. From the day that he told me that two points of equal latitude, longitude,

and elevation are not always coincident, I have learned much from him.

Of course I must thank my new coworkers (Todd, Parag, Patrick, and Mark) at

Applied Perception, Inc. (API), for giving me a hard time for taking so long to finish this

study, but more importantly for their kind words of support. I look forward to many

successful years with them at API.

Last but certainly not least, thanks go to the Air Force Research Laboratory at

Tyndall Air Force Base, FL, for funding this work. For over a decade, they have been

supporters of the work done by the talented group of roboticists at the University of

Florida’s Center for Intelligent Machines and Robotics. Without their support, this study

could not have been completed. I am thankful for their support, and I look forward to

continued work with them in the future.

vi

TABLE OF CONTENTS

 page

ACKNOWLEDGMENTS ...v

LIST OF TABLES...x

LIST OF FIGURES .. xii

ABSTRACT... xiv

CHAPTER

1 INTRODUCTION AND RESEARCH PROBLEM...1

1.1 Introduction...1
1.2 Research Problem ...4

2 REVIEW OF RELEVANT LITERATURE...6

2.1 Joint Architecture for Unmanned Systems (JAUS)..6
2.1.1 Tenets of JAUS...7
2.1.2 System Structure of JAUS..8
2.1.3 World Model Subcommittee for JAUS ..11

2.2 Real-Time World Modeling Methods ..11
2.2.1 Raster Occupancy Grid...12
2.2.2 Real Time Terrain Mapping ...13
2.2.3 Raster Traversability Grid ..14

2.3 A Priori World Modeling Methods...14
2.4 Geographic Modeling Methods ..15

2.4.1 Global Coordinate Systems ..16
2.4.2 Projected Coordinate Systems..18
2.4.3 Universal Transverse Mercator projection ...19

2.5 Georeferenced World Model Data..20
2.5.1 Raster Data Stores ..20
2.5.2 Vector Data Stores..20

2.6 Distributed World Modeling Methods..21
2.6.1 Spatial Data Transfer Standard (SDTS) ...21
2.6.2 Geography Markup Language..23

vii

3 SMART SENSORS..26

3.1 Smart Sensor Architecture..26
3.2 Smart Sensor Architecture Components...29

3.2.1 Smart Sensor Component ...29
3.2.2 Smart Sensor Arbiter Component ..31
3.2.3 Reactive Planner Component ...32

3.3 Smart Sensor Messaging Architecture..33
3.3.1 Smart Sensor Architecture Message Header ..33
3.3.2 Smart Sensor Architecture Message Set...37

3.3.2.1 Report vehicle state message..38
3.3.2.2 Report traversability grid update message40
3.3.2.3 Report region clutter index message ..42

3.3.3 Smart Sensor Architecture Network Communications44
3.4 Smart Sensor Implementation...45

3.4.1 Abstraction of Smart Sensor Core Functionality..46
3.4.2 Base Smart Sensor..46

3.5 Smart Stereo Vision Sensor Implementation..51
3.5.1 Stereo vision Hardware ..51
3.5.2 Stereo Vision Software...51
3.5.3 Smart Stereo Vision Sensor..52

3.6 Use of Obstacle Detection and Free Space Sensors ...57
3.7 Smart Sensor Arbiter Implementation ..58

4 JAUS WORLD MODEL KNOWLEDGE STORES ...60

4.1 Observations and Recommendations..61
4.1.1 Raster and Vector Object Representation...66

4.2 World Model Knowledge Store Message Set...68
4.2.1 JAUS Core Input and Output Message Sets...70
4.2.2 Raster Knowledge Store Input Message Set ..72

4.2.2.1 Code F000h: Create raster knowledge store object..........................72
4.2.2.2 Code F001h: Set raster knowledge store feature class metadata......75
4.2.2.3 Code F002h: Modify raster knowledge store object (cell update) ...75
4.2.2.4 Code F003h: Modify raster knowledge store object (grid update) ..78
4.2.2.5 Code F004h: Delete raster knowledge store objects80
4.2.2.6 Code F200h: Query raster knowledge store objects.........................80
4.2.2.7 Code F201h: Query raster knowledge store feature class metadata.82
4.2.2.8 Code F202h: Query raster knowledge store bounds83
4.2.2.9 Code F600h: Raster knowledge store event notification request83
4.2.2.10 Code F601h: Raster knowledge store bounds change event

notification request...84
4.2.2.11 Code F005h: Terminate raster knowledge store data transfer........84

4.2.3 Raster Knowledge Store Output Message Set..84
4.2.3.1 Code F400h: Report raster knowledge store object creation85
4.2.3.2 Code F401h: Report raster knowledge store feature class metadata85

viii

4.2.3.3 Code F402h: Report raster knowledge store objects (cell update)...86
4.2.3.4 Code F403h: Report raster knowledge store objects (grid update) ..88
4.2.3.5 Code F404h: Report raster knowledge store bounds90
4.2.3.6 Code F800h: Raster knowledge store event notification

(cell update) ...91
4.2.3.7 Code F801h: Raster knowledge store event notification

(grid update)...91
4.2.3.8 Code F802h: Raster knowledge store bounds change event

notification ...92
4.2.3.9 Code F405h: Report raster knowledge store data transfer

termination ...92
4.2.4 Vector Knowledge Store Input Message Set..92

4.2.4.1 Code F020h: Create vector knowledge store objects93
4.2.4.2 Code F021h: Set vector knowledge store feature class metadata96
4.2.4.3 Code F022h: Delete vector knowledge store objects97
4.2.4.4 Code F220h: Query vector knowledge store objects99
4.2.4.5 Code F221h: Query vector knowledge store feature class

metadata ...100
4.2.4.6 Code F222h: Query vector knowledge store bounds101
4.2.4.7 Code F620h: Vector knowledge store event notification request ..101
4.2.4.8 Code F621h: Vector knowledge store bounds change event

notification request ..102
4.2.4.9 Code F023h: Terminate vector knowledge store data transfer.......102

4.2.5 Vector Knowledge Store Output Message Set ...102
4.2.5.1 Code F420h: Report vector knowledge store object(s) creation103
4.2.5.2 Code F421h: Report vector knowledge store feature class

metadata ..103
4.2.5.3 Code F422h: Report vector knowledge store objects.....................104
4.2.5.4 Code F423h: Report vector knowledge store bounds107
4.2.5.5 Code F820h: Vector knowledge store event notification...............108
4.2.5.6 Code F821h: Vector knowledge store bounds change event

notification ...108
4.2.5.7 Code F424h: Report vector knowledge store data transfer

termination ...108

5 CONCLUSIONS AND FUTURE WORK...110

5.1 Conclusions...110
5.2 Future Work..111

REFERENCES ..113

BIOGRAPHICAL SKETCH ...116

ix

LIST OF TABLES

Table page

3-1 Standard JAUS sixteen byte message header...34

3-2 Smart sensor architecture message header ...36

3-3 Smart sensor architecture's report vehicle state message ...40

3-4 Smart sensor architecture's report traversability grid updates message.42

3-5 Smart sensor architecture's report region clutter index message..............................43

3-6 Smart sensor components and their component identification numbers..................45

4-1 Create raster knowledge store objects message format..73

4-2 Presence vector for create raster knowledge store objects message74

4-3 Set raster knowledge store feature class metadata message format75

4-4 Modify raster knowledge store object (cell update) message format.......................76

4-5 Modify raster knowledge store object (grid update) message format78

4-6 Delete raster knowledge store objects message format..80

4-7 Query raster knowledge store objects message format ..81

4-8 Presence vector for query raster knowledge store objects message.........................82

4-9 Query raster knowledge store feature class metadata message format83

4-10 Query raster knowledge store bounds message format ..83

4-11 Report raster knowledge store object creation message format85

4-12 Report raster knowledge store feature class metadata message format86

4-13 Report raster knowledge store objects (cell update) message format87

4-14 Report raster knowledge store objects (grid update) message format......................89

x

4-15 Report raster knowledge store bounds message format ...91

4-16 Create vector knowledge store objects message format...94

4-17 Presence vector for create vector knowledge store objects message96

4-18 Set vector knowledge store feature class metadata message format97

4-19 Delete vector knowledge store objects message format...98

4-20 Presence vector for delete vector knowledge store objects message99

4-21 Query vector knowledge store objects message format ...99

4-22 Presence vector for query vector knowledge store objects message......................100

4-23 Query vector knowledge store feature class metadata message format101

4-24 Query raster knowledge store bounds message format ..101

4-25 Report vector knowledge store object(s) creation message format........................103

4-26 Report vector knowledge store feature class metadata message format103

4-27 Report vector knowledge store objects message format ..104

4-28 Report vector knowledge store bounds message format ..107

xi

LIST OF FIGURES

Figure page

1-1 Example of the processes leading up to higher-level planning4

1-2 How our study fits into the higher-level planning process...4

2-1 System structure of JAUS ..9

2-2 Path planning in a bounded radiation environment..15

2-3 Ellipsoidal model of Earth..16

2-4 Earth-centered global coordinate system ...17

2-5 Example format of digital elevation model..21

2-6 An example of USGS source data..22

3-1 Team CIMAR NaviGATOR DARPA Grand Challenge entry vehicle....................27

3-2 Organization of the smart sensor-based perception system30

3-3 Minimally complete smart sensor-based perception system....................................38

3-4 Single sensor implementation of smart sensor-based perception system38

3-5 Unmanned system coordinate system defined by JAUS..39

3-6 Center for Intelligent Machines and Robotics Navigation Test Vehicle 2...............47

3-7 Smart sensor implementation ...47

3-8 Call graph for all functions within the base smart sensor API.................................48

3-9 Call graph for smart sensor communications receive thread48

3-10 Call graph for function that determines number of rows and columns to shift........50

3-11 Call graph for sensor specific interface thread...50

3-12 Call graph for function used to detect changes in the traversability grid.................51

xii

3-13 Videre Design STH-MD1-C stereo camera head...52

3-14 Source data and results from stereo correlation ...53

3-15 Graph of range determined from stereo vision system vs. actual measured range ..54

3-16 Plot of range resolution vs. range...55

4-1 Definition of raster grid parameters and coordinate system.....................................67

4-2 Definition of vector objects and parameters ..69

xiii

Abstract of Thesis Presented to the Graduate School

of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

DEVELOPMENT OF A GEOSPATIAL DATA-SHARING METHOD FOR
UNMANNED VEHICLES BASED ON THE JOINT ARCHITECTURE FOR

UNMANNED SYSTEMS (JAUS)

By

Carl Preston Evans, III

August 2005

Chair: Carl D. Crane, III
Major Department: Mechanical and Aerospace Engineering

A task performed almost effortlessly by humans, perception is perhaps one of the

most difficult tasks for autonomous vehicles. While substantial research has been done to

develop these technologies, few studies have examined ways for multiple heterogeneous

unmanned systems to cooperate in their perception tasks. Our study examined ways to

model both perceived and a priori geospatial information, and formatting these data so

that they can be used by the growing unmanned systems community.

We introduce a perception system model, consisting of distributed “smart” sensors.

This system of sensors was developed for the Team CIMAR entry into the inaugural

DARPA Grand Challenge autonomous vehicle competition held in March 2004. The

Smart Sensor Architecture proved to be a power method of distributing the possessing of

sensor data to systems developed by engineers who best knew a particular sensor

modality. By standardizing the logical, transport, and electrical interfaces, the smart

sensor architecture developed into a powerful world modeling method.

xiv

We also investigated current geospatial data-modeling methods used in the

unmanned systems and geodetic information systems (GIS) communities. Our study

determined the commonalities among current methods and resulted in a first-generation

geospatial data-sharing standard for unmanned systems compliant with the Joint

Architecture for Unmanned Systems (JAUS).

xv

CHAPTER 1
INTRODUCTION AND RESEARCH PROBLEM

1.1 Introduction

Imagine a world without languages, with no standard methods of communicating

with other people. Imagine a world in which an individual or a small group of

individuals had a language completely different from that of other individuals or groups.

Image also that even the most primitive methods of communicating required an

interpreter. It would be unreasonable to expect two people to be able to come together

and (with minimal effort) understand each other. This is the state of the world in the

unmanned systems community. Developing a common language for unmanned systems

is not trivial. However, as unmanned systems become more commonplace and gain the

ability to interoperate and ultimately collaborate, a standard communications method or

language must be developed.

As it has with a number of technological innovations throughout recent history, the

United States Department of Defense (DoD) is helping to revolutionize the unmanned

systems community by pushing the development of a standard communications method

for all future DoD unmanned systems. Recognizing the increased acquisition and

maintenance costs for a growing fleet of unmanned systems with proprietary interfaces,

the Office of the Secretary of Defense chartered the Joint Architecture for Unmanned

Ground Systems (JAUGS) Working Group to address these concerns. The JAUGS

Working Group was tasked with developing an initial standard for interoperable

unmanned ground systems. In 2002, the charter of the JAUGS Working Group was

1

2

modified such that their efforts would extend to all unmanned systems, not only ground

systems. The standard was therefore renamed Joint Architecture for Unmanned Systems

(JAUS).

Unmanned systems are becoming increasingly popular. In fact, large U.S.

government acquisition programs such as Future Combat Systems (FCS) and Man

Transportable Robotic Systems (MTRS) show that unmanned systems are here to stay.

The Future Combat Systems (FCS) program is an ambitious multi-billion-dollar program

with a goal of integrating autonomous, semi-autonomous, and tele-operated systems into

the battlefield of tomorrow. Man Transportable Robotic Systems (MTRS) is a large

multi-million-dollar program that requires a large number of tele-operated unmanned

systems for use in the task of explosive ordnance disposal (EOD). Both the FCS and

MTRS programs require systems that can communicate with one another (operator

control units to vehicle or inter-vehicle) using a shared language. This language (JAUS)

is the subject of our study.

Currently, JAUS supports tele-operation; and, to an extent, primitive levels of

semi-autonomy. Technological innovations in the areas of sensors, sensor processing and

fusion, perception, and intelligence have advanced robotics so much that demands that

were not long ago far-fetched are becoming a reality. To this end, JAUS must adapt to

meet the growing requirements of the semi-autonomy and autonomy camps of the

unmanned systems community. Types of autonomous behaviors are as numerous as

human behaviors. However, the next steps in the natural progression beyond tele-

operation are assisted tele-operation and autonomous navigation and obstacle avoidance.

3

It is as difficult to define a new all-encompassing language for unmanned systems

as it would be for humans. In the context of a particular mission, however, it is possible

to develop a syntax that can be used to communicate relevant information. By initially

limiting the scope of JAUS and incrementally adding functionality, a robust language is

being built.

The focus of our study was on allowing JAUS-based unmanned systems to share

geospatial data. These geospatial data are needed to support the tasks of obstacle

detection, obstacle avoidance, and path planning among multiple JAUS subsystems. The

concept of the world model helps to put this work into perspective. Meystel and Albus

[18] defined the world model as

the intelligent system’s best estimate of the state of the world. The world model
includes a database of knowledge about the world, plus a database management
system that stores and retrieves information. The world model also contains a
simulation capability that generates expectations and predictions. The world model
provides answers to requests about the present, past, and probable future states of
the world. The world model provides this information service to the behavior
generation system element in order to make intelligent plans and behavioral
choices. It provides information to the sensory processing system element to
perform correlation, model matching, and model-based recognition of states,
objects, and events. It provides information to the value judgment system element
to compute values such as cost, benefit, risk, uncertainty, importance, and
attractiveness. The world model is kept up to date by the sensory processing
system element.

A world model presents unending directions to investigate. No doubt, many such

investigations have begun. Our study focuses on the database of knowledge. We

examined how the data are stored inside the database, and how databases can share data

using a common language. In the context of JAUS, our study presents a first-generation

standard for sharing a database of knowledge. Because unmanned systems used in the

JAUS community are outdoor vehicles (and because of the desired tasks) these world

model databases store geospatial data. A review of the relevant literature formed a solid

4

basis for creating this standard. We also introduced the implementation of a perception

system.

Figure 1-1. Example of the processes leading up to higher-level planning

Geospatial data generated by an unmanned system are only as good as the system’s

sensors and its sensor fusion and registration methods. Also important is what is done

with these geospatial data after they have been fused and registered (high-level planning

and intelligent behaviors). These important issues fall outside the scope of our study.

Figure 1-1 shows some of the processes leading up to high-level planning. Figure 1-2

shows how our study fits in. The message-set generated by this study will allow different

databases to share knowledge among themselves or with higher-level planning processes.

Figure 1-2. How our study fits into the higher-level planning process

1.2 Research Problem

Our study takes its direction from the following research problem.

Given the experience and knowledge gained from examining current methods of
modeling geospatial data within the unmanned systems and geographic information
systems (GIS) communities and from implementing a perception system for an
unmanned ground system, create a first generation geospatial data-sharing method
for unmanned systems. Present this in a format consistent with the Joint
Architecture for Unmanned Systems (JAUS) messaging framework.

This is a broad and open-ended topic. However, it must be addressed. As the

capabilities of JAUS are extended, being without a method for communicating even the

most basic forms of obstacle data would be a severe limitation. The primary purpose of

5

the standard presented in our study is to support mission planning. However other

applications (such as data visualization) also benefit.

The contribution of our study is a first-generation method recommended for sharing

data needed by state-of-the-art real-world, unmanned systems. The recommendations

may be seen as guidelines for a first attempt (at least within the JAUS community) to

allow multiple disparate unmanned systems (from different organizations, with

completely different perception implementations) to share data.

CHAPTER 2
REVIEW OF RELEVANT LITERATURE

The most difficult behaviors for unmanned systems are perception and reasoning.

Reasoning for an unmanned system is highly dependent on the quality of the estimation

of the environment in which the unmanned system operates. This estimation is often

used to support higher level behaviors performed by either the unmanned system or a

human operator through tele-operation. Each system typically has its own method for

modeling and sharing data. As we move towards increased interoperability among

unmanned systems from different vendors, work must be done to bridge the gap between

different methods of representing sensed data and providing those data to disparate

unmanned systems. Again, this is the focus of our study; to provide a first generation

standardized method for modeling the environments that unmanned systems operate in

and then providing those data to other concerned manned or unmanned systems.

Much work has been done in recent years to move toward true interoperability

between unmanned systems. One of the major efforts towards reaching this goal is the

Joint Architecture for Unmanned Systems (JAUS). JAUS is a standard that defines the

format of messages that travel between unmanned systems. Since it is fast becoming the

standard for military unmanned systems, JAUS provides a suitable base upon which to

build a first generation world modeling standard for unmanned systems.

2.1 Joint Architecture for Unmanned Systems (JAUS)

The Joint Architecture for Unmanned Systems (JAUS) is a messaging standard

being developed with overall goals of reducing life cycle costs, enabling fast integration

6

7

of new technologies, and facilitating interoperability amongst heterogeneous unmanned

systems. In 1998, the Office of the Secretary of Defense (OSD) chartered the Joint

Architecture of Unmanned Ground Systems (JAUGS) Working Group and tasked this

working group with developing a common model for messages used for controlling and

monitoring processes within unmanned ground systems. Now the Joint Architecture for

Unmanned Systems (JAUS), the working group is tasked with expanding the standard to

the entire domain of unmanned systems. This group is currently represented by a diverse

group of members from government, industry, and academic institutions. By having a

wide range of input in developing the standards, JAUS is better prepared for wide

acceptance by the unmanned systems community.

2.1.1 Tenets of JAUS

To ensure the flexibility, extensibility, and ultimately the longevity of the emerging

JAUS standard, it was developed with four main tenets. These are: technology

independence, hardware independence, platform independence, and mission

independence [16].

The technology independence of JAUS assures that the messages that compose the

JAUS standard as well as the methods for transporting the messages are not dependent on

any past, present, or developing standard. For example, many JAUS implementation use

the user datagram protocol (UDP) and the internet protocol (IP) for data transmission.

Other implementations may, however, use asynchronous serial communications links

such as EIA/TIA 232. There may be cases where one communications method is

preferred over another. By restricting the dependence on a communications technology,

JAUS leaves this decision to the system developer and thus remains very flexible. By

defining only the messages to be communicated, JAUS will remain relevant over time.

8

The Hardware Independence rule is similar to the technology independence

requirement. JAUS does not rely on knowledge of the structure of an unmanned system.

There are no assumptions about the type of platform or the contents of the platform. So

long as a system has adequate hardware to create, receive, process, and respond to the

standardized JAUS messages, it is considered to be compliant with the specification.

Platform independence is the third tenet of JAUS. There are no assumptions about

the type of systems that will use JAUS. The JAUS standard is just as useful for large

tanks as it is for miniature microcontroller based unattended sensors. Surely as systems

become more embedded, the read only memory (ROM), random access memory (RAM),

and computing resources available decrease. Therefore an embedded system is less

likely to be able to support large complex JAUS messages. This is acceptable as JAUS is

very flexible with respect to the messages that each system must support. With the

exception of a small number of core input and output messages, JAUS allows systems to

use only the messages (as well as fields within those messages) that they need to perform

their function.

JAUS also does not presuppose that the unmanned systems based on the

specification are designed for any particular mission. This is the mission independence

tenet of JAUS. By defining a comprehensive message set, it is hoped that JAUS

developers can assemble systems that can complete any mission. Surely this is

intractable, but with the guidance the diverse membership of the JAUS working group,

JAUS has a firm foundation on which to build.

2.1.2 System Structure of JAUS

The Joint Architecture for Unmanned Systems consists of a number of hierarchical

elements that work together to form a complete JAUS compliant unmanned system. The

9

lowest level of abstraction within JAUS is the component. Going up the chain of

complexity, a JAUS node consists of multiple components, a subsystem consists of one

or more nodes, and a JAUS system consists of one or more subsystems. Figure 2-1

shows the structure of a JAUS system. Not show in this figure is the concept of multiple

instances of a component. This feature is included in JAUS to support component

redundancy.

Figure 2-1. System structure of JAUS

The component encapsulates a specific function and the input and output messages

necessary to command, control, and monitor the component. For example, the JAUS

Primitive Driver component is responsible for the low-level command and control of an

unmanned system. It controls and reports current status of the lowest level devices on the

platform and reports platform specific data such as platform name and dimensions.

Another component, the JAUS Global Pose component, interfaces to a device or a

number of devices that are capable of providing the platform with its current global

position, orientation, and orientation rate information. These are just two examples of

10

JAUS components. The JAUS Reference Architecture currently defines 26 components,

each with its own specific function. The Reference Architecture allows up to 254

components to operate within a JAUS node.

A node is a single computing entity that consists of one or more JAUS components

running in a tightly coupled manner. In this context, tightly coupled implies that the

computing entities are not linked by any external connections. Instead, they are

connected internally. This could be by function calls or shared memory, for example. If

two or more components are to be linked by an external communications medium, they

should be considered separate nodes. The JAUS standard currently allows up to 254

nodes within a subsystem.

A subsystem is device that performs a function through the synergy of the

component containing nodes within it. There must be at least one node within a

subsystem. This node may contain all the components necessary for the subsystem to

perform its function. The subsystem may also contain a number of nodes that each

provide components necessary for the subsystem to perform its function. The JAUS

standard currently allows up to 254 subsystems to operate within a JAUS system.

A system consists of one or more subsystems working together for some useful

purpose. This is the highest level within the JAUS hierarchy. JAUS currently does not

permit communications between different JAUS systems. Within a system, however, any

component, node, or component may communicate with any other component, node, or

subsystem.

The hope is that the JAUS standard is generalized enough that it will not inhibit the

creativity of the engineers and scientists developing these systems. Of course it is not

11

possible to account for all possible unmanned system scenarios. Because of this, the

JAUS standard has been developed to allow for the development of user-defined

components. The idea is that as these user-defined components mature and their

usefulness is recognized by the JAUS community, they would be incorporated into the

JAUS Reference Architecture. What is most important overall about JAUS is that it

standardizes the interface between these components. As unmanned systems become

more and more common place, without JAUS or some industry-wide JAUS-like standard,

the interoperability issues will only be compounded.

2.1.3 World Model Subcommittee for JAUS

In October 2002, the Joint Architecture for Unmanned Systems Reference

Architecture Committee’s World Model Subcommittee was established to address the

growing need within the unmanned systems community for a messaging architecture that

allows multiple heterogeneous unmanned systems to share geospatial data. The task of

this subcommittee was to develop the methods to allow modeling and sharing of

geospatial data within the JAUS framework. For JAUS, the primary purpose for

modeling and sharing of these data is to support the tasks of mission planning and

distributed mapping for autonomous systems. JAUS is focused on the practical approach

to unmanned systems and therefore so should a JAUS standard for geospatial data

modeling.

2.2 Real-Time World Modeling Methods

The field of mobile robotics is generally interested in real time world modeling

methods. Typically these world modeling methods support the task of reflexive obstacle

avoidance whereby an unmanned system uses an instantaneous view of the environment

to effect change in its current mission. For example, an unmanned system may be tasked

12

to autonomously navigate to a given waypoint without colliding with anything along the

way. Similar to a human reflexively reacting to a sudden undesired condition, an

unmanned system given this task may reflexively respond to obstacles that appear within

the field of view of its sensors. Often these methods require very little modeling or

processing of the sensor data. Of paramount concern is the safety of the systems.

It is often desired or necessary to have unmanned systems accumulate a model of

the environment in which they operate. This may simply be for the sake of building an

accumulative map of the environment or it may be to allow the unmanned system to

make a more informed decision should it decide that it needs to modify its current

behavior in order to successfully complete its given task. For example, if an unmanned

system can perceive the environment at a distance that extends far beyond a range at

which the system must act reflexively to maintain the safety of the system, those

additional data could be used to reactively re-plan a path that avoids the hazard

completely. At the very least, an accumulative model of the environment would provide

the system with the ability to, should it have to act reflexively, choose the best long term

plan.

Typically both reflexive and reactive obstacle avoidance systems use a tessellated

raster grid based data structure to represent the environment. These raster grids are most

commonly used for real-time world modeling because it is simple to project the sensor

view into a two-dimensional Cartesian grid.

2.2.1 Raster Occupancy Grid

Sensors are all prone to errors that affect the quality of their data. Some of the

sensors, such as radar and sonar, have wide fields of view, but very low resolution within

their fields of view. To handle the issues of uncertainty and errors in the sensor data, the

13

concept of the occupancy grid was introduced by Elfes [13]. The raster occupancy grid is

a tessellated grid used to accumulate real-time sensor data. A probabilistic model of the

data from the sensor is generated and is used to update occupancy probabilities within the

raster grid. The grid cell values for the occupancy grid represent the probability that an

object exists or does not exist in the area covered by the cell. Updates are made to the

patches of the grid that represent the field of view of the sensor. Even though this idea

was pioneered by Elfes in 1989, it is still the most common implementation for real-time

sensor data accumulation. It is especially useful for supporting the task of obstacle

avoidance.

Over the years there have been several extensions on the work done by Elfes. One

extension to Elfes’s approach was introduced by Borenstein [6]. Rather than updating a

large patch of the occupancy grid within the field of view of the sensor, this method

updates a single cell along the major axis of the sensor. Borenstein shows that as the

unmanned system traverses an area, this method is cheaper computationally and achieves

similar results. Novick [22] extended the concept of the raster occupancy grid update

method. His approach was to apply a nonhomogenous Markov chain based method to

update grid cells. Using this approach, Novick shows that this method is a significant

advance in sensor fusion for outdoor vehicles. Both Borenstein and Novick’s methods

use raster grids to represent their data.

2.2.2 Real Time Terrain Mapping

An extension of the occupancy grid methods is the real-time terrain mapping

method. This method attempts to generate a model of the Earth’s surface in a tessellated

data structure. This two and a half dimensional representation assigns a height to each

14

grid cell as opposed to an occupancy probability. Crosetto and Crippa [10] presented a

method for fusing stereo and radar data to form real-time elevation maps.

2.2.3 Raster Traversability Grid

The traversability grid concept is an extension of the both raster occupancy grid

and terrain mapping methods. In this implementation, the value in a grid cell represents

the degree to which the area covered by the grid cell is considered drivable by the

vehicle. Unlike the previous two methods, occupancy grids and terrain mapping, the

traversability method is dependent on vehicle parameters. This is because the concept of

traversability is inherently platform dependent. For example, an area occupied by a small

rock may be deemed untraversable by a small unmanned system. However, a larger

unmanned system confronting the same rock may consider the region less than desirable,

but still traversable. Vehicle parameters that are often used traversability determination

include the maximum allowable rotation angles of the platform about its three axes.

Using a model of the terrain in which an unmanned system operates, it is possible to

calculate the pose of the unmanned system along a path given the vehicle’s physical

parameters.

2.3 A Priori World Modeling Methods

An a priori world model data store is one that contains data that were accumulated

prior to use by an unmanned system. For example, if an unmanned system maps, this

map could be stored for future use by the unmanned system or transferred to another

unmanned system to allow it to make mission decisions. This is an example of the use of

raster data a priori. This is not the typical use of a priori within unmanned systems

because of possible errors in the map making process. Instead, vector methods are used

more frequently for initial data. An example of the use of this modeling method is

15

presented by Pasha [23]. The model of the world used is based on a polygonal

representation as shown in Figure 2-2. In this work, Pasha models an environment in

which an unmanned system must operate. The locations of static obstacles are known

and can be used during the path planning process. Compounding the problem however,

is the presence of numerous radiation sources. Given the obstacles and location and

strength of radiation sources, a path plan is computed that most efficiently gets the

unmanned system to its desired destination while minimizing its exposure to radiation.

Figure 2-2. Path planning in a bounded radiation environment (Source: A. Pasha, "Path
Planning for Nonholonomic Vehicles and Its Application to Radiation
Environments," Master of Science Thesis. Department of Mechanical
Engineering: University of Florida, 2003, p. 59, Figure 6-9)

2.4 Geographic Modeling Methods

The areas in which unmanned systems operate are typically assumed to be simple

planar surfaces. As unmanned systems begin to be introduced into real world outdoor

applications, this assumption can not hold.

16

2.4.1 Global Coordinate Systems

When moving from the laboratory to real world, outdoor applications that cover

large distances, the methods presented in Section 2.3 must be modified. Those methods

assumed that the unmanned system was operating in a perfectly planar environment;

where, in the case of raster data, the cells were square and the coordinate system

Cartesian. The Earth is not flat and, therefore, when unmanned systems operate over

large distances, they must take the Earth’s true shape into consideration.

There are three commonly used models of the Earth’s shape. They are actual shape

of the Earth’s surface, the ellipsoid, and the geoid [7]. Because of the large variations in

the Earth’s surface, it is difficult to develop a true mathematical model for it. Therefore,

the other two methods of modeling, the ellipsoid and the geoid, are typically used.

The ellipsoid is a mathematical model of the shape of the Earth. The ellipsoid

(Figure 2-3) is defined by its semi-major and semi-minor axes. Over the years different

Ellipsoidal models of the Earth have been established based on the best known shape of

the Earth. Currently the most commonly used model is the World Geodetic System as

defined in 1984 (WGS84). This model defines the semi-major axis r1 as 6,378,137.0

meters and the semi-minor axis r2 as 6,356,752.3 meters [7].

Figure 2-3. Ellipsoidal model of Earth

17

Once the Earth ellipsoidal model is established, a geographic coordinate system

must also be established. Because of the spherical shape of the Earth, a spherical

coordinate system is used to define points on the ellipsoid. A point on the ellipsoidal

surface is described in spherical coordinates by a latitude value in degrees, a longitude

value in degrees, and a height or elevation value in feet or meters. As shown in Figure

2-4, latitude values increase going north and range from -90° at the South Pole, to 0° at

the Equator, to 90° at the North Pole. Longitude values start at 0° at the Prime Meridian

and range between plus and minus 180°. The values go negative going west and positive

going east.

Figure 2-4. Earth-centered global coordinate system

Bolstad [7] describes the geoid as a three-dimensional surface that has a constant

pull of gravity at each point. This equipotential surface is important for establishment of

a vertical datum. In fact, this surface typically defines what is referred to as mean sea

level [36]. If the Earth was covered by only water and no land, gravity would pull the

water such that the geoid and the sea level would be the same [36]. This is how mean sea

level is defined for land areas that are not near the sea. As with the ellipsoid model,

18

locations are referenced by latitude, longitude, and elevation. The difference is that the

ellipsoid model uses the surface of the ellipsoid to establish elevation whereas this

method measures the elevation of the geoid with respect an ellipsoid.

2.4.2 Projected Coordinate Systems

While true global coordinates are expressed as points of latitude, longitude, and

elevation, it is more intuitive to model the world in Cartesian coordinates. This is

particularly true when extending the methods in Section 2.3 to outdoor applications. In

order to use a Cartesian coordinate system, methods have been established to

mathematically project global, spherical coordinates onto a rectangular grid.

Because it is not possible to exactly represent this three-dimensional surface in

two-dimensions, there are different mathematical projections that preserve different

features of the three-dimensional surface. Typical features that are preserved are local

shape, area, distance, and true direction. Conformal projections preserve local shape,

equal area projections preserve area, equidistant projections preserve distance to some

points, and true-direction projections preserve true-course between certain points [14].

Projections are not only classified by the types of features they preserve, they are

also classified by the type of method used to create them. The main classifications are:

cylindrical, conic, and planar or azimuthal [14].

Cylindrical projections convert from the Earth’s three-dimensional spherical

coordinate system to a cylindrical coordinate system. After the projection, the cylindrical

representation is sliced so that it forms a two-dimensional rectangular representation of

the Earth’s surface. Conic projections convert from the Earth’s three-dimensional

spherical coordinate system to a conic coordinate system. After the projection, the conic

representation is sliced so that it forms a two-dimensional representation of the Earth’s

19

surface. Planar or azimuthal projections convert from the Earth’s three-dimensional

spherical coordinate system directly to a planar coordinate system. There are numerous

types and variation of each type of projection. Bolstad [7] and ESRI [14] provide qn in-

depth discussion of these projections and many of their variations.

2.4.3 Universal Transverse Mercator projection

The Universal Transverse Mercator (UTM) projection is a modification of the

cylindrical Mercator projection. This projection is a conformal projection which

preserves local shape of objects [14]. It creates minimal distortion of areas, local angles,

and distance [14]. Unlike the cylindrical projection shown in Figure 2-5, the UTM

projection divides the cylinder into 60 vertical zones. Each UTM zone is exactly 6

degrees of longitude wide and is further divided into north and south parts [7]. The UTM

zones each have their own coordinate system which is completely different than the

coordinate system of other zones. Because of this, it is difficult to use the UTM

projection when traveling between UTM zones. This is rarely a problem with unmanned

ground systems because the six degree UTM zones are much larger than what would be

reasonably expected for a system of this type to traverse. It may be an issue with

unmanned aerial vehicles, but this is something that can be taken into account by the

system developers.

What is most attractive about the UTM projection is that it is a projection that is

defined globally. In each zone, it is able to maintain shape, area, direction, as well as

distance. These are all features that are important for unmanned vehicles during

navigation and world modeling tasks. The reader is referred to [7] for a more in-depth

discussion of the Universal Transverse Mercator projection, its applications, and

limitations.

20

2.5 Georeferenced World Model Data

The modeling methods presented in Sections 2.3 and 2.4 are dependent on a planar

assumption for the environment that the unmanned system operates in. In these

applications, the coordinate systems are Cartesian with the origin being based on an

arbitrarily chosen local coordinate system. As discussed in Section 2.4, these data can be

stored and used as a priori data from other unmanned systems. What is more common,

however, is to use data from third party sources. The most important

2.5.1 Raster Data Stores

Raster Data Stores are those that provide tessellated grid based geospatial data.

Examples of the raster data stores include Digital Elevation Model (DEM), Digital

Terrain Elevation Data (DTED), Digital Raster Graphics (DRG), Digital Orthophoto

Quadranges (DOQs). This list is by no means exhaustive. There are many more types of

raster data stores. Each type of data store provides different types of data at different

resolutions possibly using different projections.

Figure 2-5 shows the high-level format of Digital Elevation Model (DEM) data.

DEM data use the UTM projection to create a Cartesian coordinate system. These DEM

data represent a 2.5D surface. The resolution of DEM data is 30 meters.

2.5.2 Vector Data Stores

Vector Data Stores are those that provide geospatial data that are referenced by

points, lines, or vertices of polygons. Types of vector data stores include Digital Line

Graphs (DLG), State Soil Geographic (STASGO), and Topologically Integrated

Geographic Encoding and Referencing (TIGER). This list is by no means exhaustive.

There are many more types of vector data stores available from third parties.

21

Figure 2-5. Example format of digital elevation model

Figure 2-6 shows an example of Digital Line Graph (DLG) data being extracted

from a Digital Orthophoto Quadrangle. The benefit of this extraction is that the resulting

DLG vector data size is smaller than the DOQs data size.

2.6 Distributed World Modeling Methods

There are very few major efforts attempting to tackle the difficult task of

distributed world modeling. Two of the current efforts are the Spatial Data Transfer

Standard (SDTS) and the Geography Markup Language (GML).

2.6.1 Spatial Data Transfer Standard (SDTS)

SDTS is an open standard being developed by the Unites States government for use

in geographic information systems. One of the reasons for developing this standard is

that there are various types of geospatial data available based of different Earth models

and projections with each having different errors associated with them. SDTS seeks to

provide a method that allows a complete data transfer with all necessary information

22

associated with those data needed to incorporate them into other data systems. SDTS

specifies the entire process of storing and sharing geospatial data. This ranges from the

methods for modeling raster and vector geospatial data down to the way that data are

stored in digital files. SDTS is also a very broad standard that is able to support different

models of the Earth, different map projections, and different method of modeling the

data.

A B

Figure 2-6. An example of USGS source data. A) USGS Orthoimage B) Extracted
digital line graph

The SDTS is divided into six profiles that completely define the standard. The first

three parts define the logical specification, spatial features, and data encoding,

respectively. The other parts are called profiles. Each profile provides instructions for

using the base SDTS rules, parts one through three, to different types of geospatial data

[32].

Part four of the SDTS standard is the Topological Vector Profile (TVP). This

profile allows transfer of geospatial vector data described by vector geometry and

23

topology. This profile allows data to be geometrically described using points, lines,

polygons, as well as combinations of these. The Topological Vector Profile is useful for

transferring digital line graph (DLG) data such as those presented in Figure 2-9 [3].

Part five of the SDTS standard is the Raster Profile and Extensions (RPE). This

profile supports various types of raster formatted geospatial data. This includes

Georeferenced orthoimages, grid formatted terrain data such as DTED and DEM, as well

as any type of tessellated geospatial data. RPE does not support data of a higher

dimension that two and a half (such as terrain data) [5].

The Last part of the current version of SDTS is the Point Profile. This profile

provides support for high precision point data only. While the Topological Vector Profile

does support point data, it does not at high enough precision for some applications. The

Point Profile supports up to 64 bits of precision whereas the TVP only supports up to 32

bits of precision [4]. All six parts of the SDTS standard combine to form a powerful and

comprehensive method for modeling and distributing geospatial data.

2.6.2 Geography Markup Language

The Geography Markup Language (GML) is a broad standard that supports raster

and vector data in 2, 2.5, and 3 dimensions. It also supports more types of complex

shapes and surfaces than are needed for unmanned system world modeling. It is able to

support data based on different projections as well as different Earth models [11].

GML is an extension of the Extensible Markup Language (XML). XML, like the

Hypertext Markup Language (HTML) commonly used for transfer of web pages,

supports tags that specify the types of data included in the document. For XML the tags

are defined by the document creator for the type of data included. HTML specified all of

its tags a priori. Also unlike HTML, XML and subsequently GML, does not mix the

24

data content with the formatting of the content. For GML, the descriptors (or tags) are

geospatial data related. While XML provides a very loose structure for the types of data

described, GML places restrictions on XML by specifying the methods for geometrically

modeling the data. If GML based system developers associate different attributes with

the geospatial data types, they will at the very least be able to understand each other’s

data at a geometric level [17].

Both SDTS and GML are both adequate methods for modeling geospatial data and

sharing those data, but they are not exactly appropriate for JAUS based unmanned

systems. Of the two, GML is more appropriate since it is based on the powerful XML

standard which is designed for real-time transfer. By defining additional XML tags, it is

possible to make data store modifications in real-time rather than on a per XML

document basis. The downside of GML is that it is all ASCII text based and requires

extra characters to support its extensibility. Because some of the tags are many

characters long, this translates to additional bandwidth being used for the support

characters.

SDTS is not appropriate for use with unmanned systems where bandwidth

utilization should be minimized. Because SDTS transfers are to be all self-contained

with all necessary data included, this is not suitable for real-time data transfer. A real-

time world modeling message set should support the ability to make individual changes

to the data store in real-time rather than requiring changes to be transmitted via an

updated version of all the data in the data store.

This work is interested in using the power of the JAUS infrastructure to support

distributed world modeling. Since JAUS defines the structure of its messages a priori,

25

beyond its 16-byte header, JAUS does not require any other bytes to support its

infrastructure. All of the data after the JAUS header are values for the field described in

the JAUS message definition. Rather than incorporating a completely different, non-

optimal standard into JAUS for world modeling, the world modeling standard builds on

the framework developed by the JAUS Working Group.

CHAPTER 3
SMART SENSORS

While setting out to develop a standard for modeling the various types of geospatial

data presented in the preceding chapter, a distributed set of world models was developed.

These world models were tightly coupled to their associated sensors and therefore were

initially considered to be smart sensors.

3.1 Smart Sensor Architecture

The smart sensor architecture was originally developed for the perception system in

the Team CIMAR NaviGATOR which is represented Figure 3-1. The NaviGATOR was

developed as an entry to the 2004 Defense Advanced Research Projects Agency

(DARPA) Grand Challenge. Held in March of 2004, the DARPA Grand Challenge was a

first of its kind unmanned ground vehicle (UGV) competition. The thrust of this

challenge was to develop a UGV that could autonomously navigate and avoid obstacles

over the approximately 140 miles from Barstow, California to Primm, Nevada - crossing

the Mojave Desert.

Team CIMAR consisted of graduate students and engineering staff from the

University of Florida’s Center for Intelligent Machines and Robotics (CIMAR) and

Logan, Utah based Autonomous Solutions, Inc.

Recognizing the power and flexibility afforded by the use of JAUS, Team CIMAR

used it throughout the NaviGATOR and therefore developed, at the time, one of the only

completely autonomous systems based on the Joint Architecture for Unmanned Systems

(JAUS). The exception to this was the Navigator’s perception system where the

26

27

messages that defined the smart sensor messaging architecture were only loosely

modeled after the JAUS standard and the JAUS World Modeling Subcommittee’s

forthcoming draft message set which is presented in Chapter 4 of this document.

The smart sensor architecture is a networked system of distributed, modular,

heterogeneous sensor units that all use a common messaging and network interface to

share data. Each smart sensor processes data specific to its associated sensor modality

and determines region traversability using a suitable traversability metric as determined

by the sensor system developer. These geospatial traversability data are shared within the

perception system and provided to higher level planning components to allow them to

make intelligent decisions such as obstacle avoidance.

Figure 3-1. Team CIMAR NaviGATOR DARPA Grand Challenge entry vehicle

28

The smart sensor units are considered “smart” because they not only process their

sensor data, they also provide a logically redundant interface to other components within

the system. The impetus behind the creation of this smart sensor architecture was to

allow sensing system implementers to develop their sensing technologies independent of

one another and then have them, with minimal effort, seamlessly integrate their work to

form a robust perception system. The JAUS-like messaging infrastructure and logical

redundancy of the smart sensors afforded this flexibility. Even though their

implementations and sensor modalities are different, these sensor units are logically

redundant in that their messaging interfaces are identical [19]. The idea was that each

sensor implementer best knew how to process and register their own sensor data. Rather

than relying on a probabilistic model of the sensor to homogenize the sensor data on one

system, this implementation expects the sensor data to be homogenized before they are

fused. Once their data were available, the smart sensors would publish the data to a

central component, the smart sensor arbiter, whose responsibility would be to fuse the

data from all of the smart sensors.

The output of the smart sensors is a measure of region traversability cost. This cost

is based on a sensor-specific traversability metric being applied to the data from a

physical obstacle detection sensor. Behaviors of this type, associating a cost to an

attribute based on a metric, are called value judgment [18]. Smart sensor developers

were permitted to use any sensor modality that presented data that could be processed to

provide sufficient traversability value judgment. For this implementation, these included

stereo vision, stationary laser measurement system, and monocular vision based smart

sensors all developed by researchers at the University of Florida. A continuously rolling

29

laser measurement system based smart sensor was developed at Autonomous Solutions,

Inc.

While there are duplicate sensor types, the implementation of the associated smart

sensor makes the data from the sensors quite unique. For example, the stereo camera and

monocular cameras use the same sensing modality however the difference is in the

implementation of the smart sensors. The stereo camera data are processed so that they,

through the use of image rectification and correlation, provide a sparse three-dimensional

representation of the environment within the field of view of the cameras. Traversability

is determined by considering the stereo data as real-time terrain data and applying value

judgment. The implementation of the monocular camera based smart sensor utilized

color and cluster affinity in RGB-space to classify image pixels that belonged to

traversable surfaces.

Once the individually developed smart sensors were completed, a predefined

messaging architecture was used to transmit the traversability data within the perception

system. In order to support true interoperability, however, electrical and transport layer

issues also had to be addressed. These issues will be address later in this chapter.

3.2 Smart Sensor Architecture Components

There are three major types of components that make up the perception system’s

smart sensor architecture. These are the smart sensor, smart sensor arbiter, and reactive

planner components. Figure 3-2 shows the perception system components as well as the

component interconnects.

3.2.1 Smart Sensor Component

The smart sensor is a modular perception system component that provides an

interface between a physical sensor and the smart sensor network. It encapsulates a

30

physical sensor, the hardware necessary to process the sensor data, a method for

determining region traversability from the processed sensor data, a standardized

messaging interface, and a communications link.

Figure 3-2. Organization of the smart sensor-based perception system

A smart sensor is modular in that it shares the same logical interface with all other

smart sensors. With the exception of a single field in the message header, the source

component identification number, the output format of each smart sensor is identical to

that of all other smart sensors. This allows any smart sensor to seamlessly replace any

other.

Internally, the smart sensor maintains a tessellated traversability grid of a size

specified by the predefined range and resolution of the grid. As with the occupancy and

traversability grids introduced in Chapter 2, this grid maintains a fixed orientation and

31

remains vehicle centered. In this implementation, the grid maintains a north-east

orientation.

As the vehicle moves, the grid is translated in discrete steps to compensate for the

vehicle’s movement. The translation of the vehicle is determined from the previous and

current positions of the vehicle as provided by a global positioning system (GPS)

providing coordinates in the WGS84 coordinate system. The coordinates are projected

from global to Cartesian coordinates using the Universal Transverse Mercator (UTM)

projection. The difference in position, in meters East and North of the origin, is

converted to a translation of grid rows and columns. To assure that the vehicle is always

centered in the center cell of the traversability grid, the grid dimensions, rows and

columns, are required to be odd.

The geospatial traversability data are registered by using the vehicle’s orientation to

project the sensor data into the two-dimensional traversability grid. As the vehicle

translates and rotates, changes to the traversability grid are monitored. As the values of

cells change, the updated values are transferred to other systems to provide grid

synchronization.

3.2.2 Smart Sensor Arbiter Component

The smart sensor arbiter has the responsibility of fusing data from the smart sensors

and, through the synergy of the different sensor modalities, providing a better model of

the world to the reactive planner component.

In a complete smart sensor system, the arbiter component is the hub of all data

traffic from the smart sensors. As it receives traversability updates from the smart

sensors, it immediately fuses the updated data with that from previous sensor updates.

Generally, the method used to fuse the traversability data from the sensors is not

32

specified and is left to the implementer. What is important is that the interface to the

arbiter is consistent with the smart sensor message set and that the arbiter’s grid

resolution is the same as the smart sensors’. Maintaining a grid of equal size as the smart

sensors is not required as it may be desirable to have a grid that extends well beyond the

bounds of all of the smart sensor grids. This allows the arbiter to maintain a larger local

memory of the area perceived by all the smart sensors. In a system with multiple

subsystems, this functionality could be used for collaborative mapping of large areas.

The smart sensor arbiter also includes a virtual component - the Region Clutter

sensor. This component provides a very fast indication of the saturation of non-

traversable areas within the unmanned system’s immediate vicinity. This feature gives

the higher level planning components information that allows it to modify the vehicle’s

speed as it encounters cluttered areas. By modifying the system’s travel speed, there may

be adequate time to generate a plan to negotiate the non-traversable regions.

The smart sensor arbiter also shares the same logical interface as the smart sensors.

This allows smart sensor based perception systems to use a single smart sensor without

the smart sensor arbiter or multiple smart sensors with the arbiter. This flexibility is an

asset especially in the development and debugging processes.

3.2.3 Reactive Planner Component

Within the smart sensor based perception system, higher level obstacle avoidance

and vehicle travel speed control is the responsibility of the reactive planner component.

The reactive planner component, using the JAUS communications network, receives the

position, orientation, and orientation rates of the platform from the JAUS Global Pose

and Velocity State components. The reactive planner component then uses the smart

sensor architecture messaging interface and the smart sensor network to transmit the

33

position and orientation updates to the smart sensors. The same network is used to

receive the smart sensors’ traversability data.

As it is receiving traversability grid updates from either the arbiter or smart sensors,

the reactive planner continuously searches for the optimal, lowest cost path through the

accumulated traversability data. The output of the reactive planner is a modified path

plan for the unmanned system to execute.

3.3 Smart Sensor Messaging Architecture

In order to support the development of the components of the perception system, a

standardized messaging interface was defined. Its use was mandated for all components

participating in the smart sensor based perception system. This messaging interface was

to a large degree based on the methodologies and messages established by JAUS.

3.3.1 Smart Sensor Architecture Message Header

To support message identification, routing, and transfer, a modified version of the

standard 16 byte JAUS message header was created. The JAUS header supports more

functionality than needed by the smart sensor architecture. Therefore the majority of the

bytes within the header would not be needed. Because of the volume of data transferred

within the smart sensor system, any savings of would be beneficial. Therefore the JAUS

header was reduced so that all unnecessary header fields were removed. Table 3-1 shows

the format of the official JAUS message header. Since the smart sensors communicated

on their own network, this optimization had no effect on the JAUS based NaviGator

network.

34

Table 3-1. Standard JAUS sixteen byte message header

Field # Field Description Size (Bytes)
1 Message Properties 2
2 Command Code 2
3 Destination Instance ID 1
4 Destination Component ID 1
5 Destination Node ID 1
6 Destination Subsystem ID 1
7 Source Instance ID 1
8 Source Component ID 1
9 Source Node ID 1
10 Source Subsystem ID 1
11 Data Control (bytes) 2
12 Sequence Number 2
 Total Bytes 16

The smart sensor development team made several assumptions about the data

transfer process in order to justify the reduction in header size. They are as follows:

• Smart sensors are all contained within the same subsystem
• Smart sensors are single component nodes
• Smart sensors have distinct component identification numbers
• Smart sensors have only one instance
• Smart sensor message types are unidirectional
• Smart sensors use the same version of the interface control document
• Smart sensors do not use service connections
• Smart sensors do not require message acknowledgment
• Smart sensors transmit messages of the same priority

The smart sensors are all contained within the same subsystem and the subsystem

does not communicate spatial data to any other subsystem, therefore the fields for the

destination and source subsystem identification numbers (fields 6 and 10, respectively)

would be equal and would always remain static. Removing these fields reduces the

required header size by 2 bytes.

The message header fields 5 and 9, node identifiers, may be removed due to the

assumption that the smart sensors are single component nodes and that each smart sensor

35

has its own component identification number. Because of these assumptions each

component identification number must be coupled to one and only one node

identification number. Therefore specifying both the component and node identifiers

would be redundant. The removal of the destination and source node identifier fields

saves an additional two bytes. Therefore, the smart sensor components are addressed

only by component identification numbers.

Within the smart sensor system there is no redundancy of smart sensor

implementations, therefore the header’s instance identification fields, 3 and 7, would

never be used. Removal of these fields results in a savings of 2 bytes.

It is important to note that this redundancy assumption is specific to the smart

sensor implementation where each individual smart sensor has its own component

identification number. In a true JAUS system, this would not necessarily be the case.

They would be treated as redundant components since each smart sensor is just another

instance of the same.

Messages traveling down stream from the reactive planner component to the arbiter

and smart sensors are position and orientation update messages. Messages traveling

upstream from the smart sensors to the arbiter and reactive planner are cell update

messages. The exception to this rule is the arbiter clutter sensor component, which will

be discussed in greater detail later in this chapter. Because message types are

unidirectional and there is a priori knowledge of the system configuration, this

assumption removes the need for the source component identification number and the

message command code; a combined savings of three bytes.

36

The message properties field in the JAUS header provides important information to

the receiving JAUS component. This includes the version of JAUS Reference

Architecture message set used to create the attached message as well as message type,

acknowledgement, and priority information. The last four assumptions have a direct

impact on this message field by making it useless. The assumption that the smart sensors

are not using service connections also removes the need for the Sequence Number field

of the JAUS header. Combined, these four assumptions result in a savings of four bytes.

The cumulative savings produced by the nine assumptions presented above is 13

bytes. In a system with a relatively large amount of bandwidth or less frequent raster

geospatial data transfers, the thirteen-byte savings may not seem significant. Since the

message header must be attached to each message, however, when there is a large volume

of data, as can be expected within the smart sensor architecture, the aggregate savings can

be substantial. The final three-byte header is show in Table 3-2.

Table 3-2. Smart sensor architecture message header
Field # Field Description Size (Bytes)
1 Source Component ID 1
2 Data Control (bytes) 2
 Total Bytes 3

One of the strengths of JAUS is that the messages are develop completely separate

from, and are not at all dependent on, the message header. Because of this, the smart

sensor messages that will be introduced may be transmitted using any message header

that can be used to properly route the messages to their intended destination. Again, the

header size reduction presented in this section was made primarily for the purpose of

saving bandwidth and computing resources.

37

3.3.2 Smart Sensor Architecture Message Set

The NaviGATOR’s perception system, consisting of the components of the smart

sensor architecture, provides a unique method for transferring and synchronizing raster

formatted geospatial traversability data. The structure of the messages within this

architecture is based on the JAUS Reference Architecture message set. They were

designed to support the interoperability, extensibility, and logical redundancy required of

the smart sensor architecture.

Figure 3-3 shows the minimum number of component types needed for a complete

smart sensor system. It is considered complete because all of the core components are

present; the reactive planner, arbiter, and smart sensor. It is minimal because only one

smart sensor is present. In fact, this system is not particularly useful because the arbiter

and the smart sensor’s internal traversability grid representations would be exactly the

same. Therefore, the arbiter should be used when there is more than one smart sensor

present.

Using the logical redundancy provided by the smart sensor architecture, a more

efficient implementation of a single sensor based system is shown in Figure 3-4. This

showcases the power of the logically redundant interface as a smart sensor may replace

the arbiter or any other smart sensor.

There are three types of messages used within the smart sensor based perception

system. They are:

• Report Vehicle State
• Report Traversability Grid Updates
• Report Region Clutter Index

38

Figure 3-3. Minimally complete smart sensor-based perception system consisting of one
instance of the core component.

Figure 3-4. Single sensor implementation of smart sensor-based perception system
consisting of a single smart sensor synchronizing data with the reactive
planner.

The Report Vehicle State message communicates vehicle position, orientation, and

orientation rate information. Updates to the smart sensor or smart sensor arbiter

traversability grid are transmitted through the use of the Report Traversability Grid

Updates Message. The Report Region Clutter Index message transmits an indication of

the saturation of non-traversable areas in the immediate vicinity of the vehicle.

3.3.2.1 Report vehicle state message

The Report Vehicle State message, consisting of vehicle position, orientation, and

orientation rate updates, is a combination of the JAUS Code 4402h: Report Global Pose

and Code 4404h: Report Velocity State messages. The position of the platform is given

39

in latitude, and longitude in accordance with the WGS84 standard. The orientation and

orientation rates are with respect to the vehicles coordinate system as defined by JAUS

(Figure 3-5).

(a)

(b)

(c)

(d)

x

y

z

x

y

z

x

y
z

x

y

z

ground plane

north
direction

ψ

θ

φ

Figure 3-5. Unmanned system coordinate system defined by JAUS

To allow message types of variable size where only the desired data are

transmitted, JAUS provides a presence vector. This presence vector is an n-byte bit field

with flags indicating which optional fields are present in a JAUS message. For the smart

sensor implementation, only the latitude, longitude, roll, pitch, yaw, roll rate, pitch rate,

and yaw rate fields are needed from the JAUS Report Global Pose and Report Velocity

State messages. The remaining fields are not included in the transmitted message. Since

40

these unneeded fields have been removed from this message contraction and there is a

priori knowledge of the structure of this message, the presence vector was also removed.

The benefit of this approach is that the Report Global Pose and Report Velocity

State messages do not have to be sent separately with the 16 byte JAUS header attached

to each. An additional benefit to this approach is that the position, orientation, and

orientation rate fields are synchronized; i.e. the message includes an instantaneous

reading of both the position and orientation data.

This Report Vehicle State message, Table 3-3, is 20 bytes in length, 23 bytes

including the message header. Fields 1 and 2 contain the latitude and longitude,

respectively, as scaled integers. Fields 3 through 5 contained the vehicle orientation and

fields 6 through 8 contain the orientation rates.

Table 3-3. Smart sensor architecture's report vehicle state message
Field # Name Type Units Interpretation

1 Latitude
(WGS 84) Integer Degrees

Scaled Integer
Lower Limit = -90
Upper Limit = 90

2 Longitude
(WGS 84) Integer Degrees

Scaled Integer
Lower Limit = -180
Upper Limit = 180

3 φ (Roll)
4 θ (Pitch)
5 ψ (Yaw)

Short
Integer Radians

Scaled Integer
Lower Limit = -π
Upper Limit = π

6 Roll Rate
7 Pitch Rate
8 Yaw Rate

Short
Integer

Radians
per Second

Scaled Integer
Lower Limit = -32.767
Upper Limit = 32.767

3.3.2.2 Report traversability grid update message

The Report Traversability Grid Update message provides a synchronization

mechanism between the multiple distributed traversability grids. This functionality is

event driven and based on updates to the smart sensors’ traversability grids. When a

change is made to a traversability grid, the change is transmitted to the destination

41

component to synchronize the two grids. By making the process event driven, bandwidth

utilization is reduced over transmitting the entire traversability grid, especially when

there are only a small number of changes to the traversability grid.

The Report Traversability Grid Updates message is shown in Table 3-4. The first

two fields of the message are a latitude and longitude position stamp. This position

stamp represents the point with which the cell update values are referenced; the current

location of the vehicle at the time the sensor data was processed. Following the position

stamp is a series of cell update three-tuples. Each three-tuple represents the traversability

grid update as an updated cell row, column, and traversability value.

The traversability grid cell update values use the entire numeric range of a byte, 0

to 255, to represent the traversability of the region represented by the cell. A value of

127 corresponds to an unknown traversability. As the value approaches zero, exclusive

of zero, the cell classification become more and more non-traversable. Conversely as the

value approaches 255, the classification is more traversable. The grid cell value zero is

reserved exclusively for the world model corridor data which is used to constrain the

search for the lowest cost path through the traversability grid.

This message allows all changes to be transmitted in one message, provided that

the total message data size is less than the 65527 bytes that the smart sensor architecture

header permits. This limit is determined by the UDP/IP transport layer’s limit on the

maximum number of payload data bytes that may be transmitted in a single transaction

[24]. Should the Report Traversability Grid Update message exceed 65527 bytes, it

should be broken into separate messages. These separate messages should have the same

latitude and longitude position stamp values as the first cell update message. This

42

latitude and longitude position stamp is very important as it defines the origin of the cell

changes.

The total number of three-tuple cell updates being transmitted may be inferred from

the header data bytes field by subtracting the eight bytes required by the position stamp

and dividing the remainder by three.

3.3.2.3 Report region clutter index message

Within the perception system, there is a need to allow higher level components,

particularly the Reactive Planner, to know the degree of saturation of non-traversable

areas local to the vehicle. The purpose of this is to allow the UGV to reduce its speed to

allow it to successfully negotiate the traversable regions. To support this, another

pseudo-component was developed. This component, the Region Clutter Sensor, is

embedded in the arbiter. It simply provides a fast assessment of the percentage of cells in

a specified area that are classified as non-traversable. This message is sent to the reactive

planner, which has the responsibility for determining how to react to this notification.

Ideally, the reactive planner converts the clutter percentage to a recommended vehicle

speed and transmits this to the Global Path Segment Driver component using the JAUS

Code 040Ah: Set Travel Speed message.

Table 3-4. Smart sensor architecture's report traversability grid updates message.
Field # Name Type Units Interpretation

1 Latitude
(WGS 84) Integer Degrees

Scaled Integer
Lower Limit = -90
Upper Limit = 90

2 Longitude
(WGS 84) Integer Degrees

Scaled Integer
Lower Limit = -180
Upper Limit = 180

3 Cell Update 1
Row Byte N/A

4 Cell Update 1
Column Byte N/A

43

Table 3-4. Continued
Field # Name Type Units Interpretation

5 Cell Update 1
Value Byte N/A

0 – Reserved for World
Model
1 … 126 – Non Traversable
127 – Unknown
128 … 255 – Traversable

The grid maps should be
initialized to 127 (Unknown)

A value of 1 represents
completely non-traversable

A value of 255 represents
completely traversable

… … … … …
… … … … …
… … … … …

3n Cell Update n
Row Byte N/A

3n + 1 Cell Update n
Column Byte N/A

3n + 2 Cell Update n
Value Byte N/A Same as field 5

The area covered by the Region Clutter Sensor is not specified in the Smart Sensor

Architecture Interface Control Document (ICD). This is a system specific parameter and

is therefore left to the system implementer. A system traveling at high speed may need to

monitor a large area whereas a slower or smaller system may need to monitor a smaller

area.

Table 3-5. Smart sensor architecture's report region clutter index message.
Field # Name Type Units Interpretation

1 Clutter
Index Byte Percent

Scaled Byte
Lower Limit = 0
Upper Limit = 100

Percentage clutter in

specified area

44

3.3.3 Smart Sensor Architecture Network Communications

The smart sensor data are transferred within the perception system via the user

datagram protocol (UDP) running on top of the Internet protocol (IP). This combination

of user datagram protocol and the Internet protocol will be referred to as UDP/IP.

UDP/IP provides a connectionless, unreliable communications link between systems.

The term unreliable is in some respects a misnomer because UDP/IP can provide a

quality connection. Unlike the Transmission Control Protocol, UDP does not have any

checks to assure receipt of data. It relies on the host application to do the checking. For

example, the JAUS header provides a message acknowledgement flag that requests that

the receiving component notify the sending component of receipt of a message. If the

sending component does not respond in a set period of time, as per the JAUS RA, the

sending component retries up to three times and then terminates transmission. If a JAUS

implementation used UDP/IP, then this functionality would help assure reliable

communications.

The smart sensor system is set up a priori under the assumption that the minimum

number of system components are present and that they are online and in the ready state.

It was developed such that each component commences transfer of the supported

messages to the appropriate component directly after initialization. This may be

considered transmission of unsolicited responses to repeated data queries (sans the

queries) or as an unsolicited JAUS service connection. The UDP/IP transport layer

supports this functionality. UDP/IP is connectionless and therefore does not require that

the destination component be present or a link established in order for data to be sent

within the system. The popular alternative to UDP/IP, TCP/IP, generally requires that a

socket connection be established between two or more systems before data can be sent.

45

To route data to the smart sensors, internet protocol (IP) addresses had to be

defined. To allow the IP addresses to be determined dynamically based on the

destination of the message, an IP addressing convention was established. Since each

smart sensor has a unique component ID, the component ID was used as the last octet of

the IP address. The first three octets of the IP address were established a priori. For

example: 192.168.1.component_id is an example configuration where the first three

octets are the defined and the component ID is used as the last octet. Table 3-6 presents a

list of smart sensor components and their associated component identification numbers.

A standard UDP/IP port was also designated.

The network interface between all components within the perception system was

wired Ethernet capable of providing data transfer at rates of up to 100 Megabits per

second.

Table 3-6. Smart sensor components and their component identification numbers
Smart Sensor Component ID
Reactive Planner 10
Smart Sensor Arbiter 11
Smart 3D Laser Sensor 21
Smart Stereo Vision Sensor 22
Smart Terrain Finder Sensor 23
Smart Road Finder Sensor 24
Smart World Model Sensor 25
Region Clutter Sensor 127

3.4 Smart Sensor Implementation

While the smart sensor architecture was originally developed for the Team CIMAR

NaviGATOR, final testing and verification took place on the Center for Intelligent

Machines and Robotics’ Navigation Test Vehicle 2 (NTV2) shown in Figure 3-6. The

implementation of the smart sensor units at CIMAR exploited the commonality between

implementations.

46

3.4.1 Abstraction of Smart Sensor Core Functionality

Because of the considerable amount of implementation overlap, the CIMAR smart

sensor system was designed so that all developers build their smart sensors on top of a

common base implementation that contained the core smart sensor functionality. This

approach saved a considerable amount of time because testing and debugging of the main

base sensor implementation occurred independent of development of the sensors. The

interface to this system was made into a clean application programmer’s interface (API).

This API handles communications, grid synchronization, and all other low level

smart sensor tasks. The system designer has the responsibility of processing the sensor

specific data to determine traversability, placing that data in a grid of the proper range

and resolution, and using the smart sensor API to publish the new data to concerned

components within the system. Figure 3-7 shows the high-level conceptual separation

between the two functions. The power of this approach is that it allows new

implementations of sensors to come online in very short order.

3.4.2 Base Smart Sensor

The base smart sensor encapsulates all low-level functionality common to all smart

sensors. This functionality includes:

• Allocating memory for a local traversability grid
• Receiving position and orientation updates via UDP/IP
• Transforming data from sensor coordinates to grid coordinates
• Shifting the traversability grid to keep it vehicle centered
• Monitoring traversability grid updates
• Synchronizing traversability grid updates via UDP/IP

47

Figure 3-6. Center for Intelligent Machines and Robotics Navigation Test Vehicle 2.

Figure 3-7. Smart sensor implementation - abstraction of low-level smart sensor
functionality

This functionality leaves to the operator the task of solely proving an instantaneous

local traversability grid from their sensor data. They initialize their smart sensors using

the API. The base smart sensor has two thread that run concurrently with the sensor

interface specific thread. Figure 3-8 shows a call graph for all functions within the base

smart sensor.

48

Figure 3-8. Call graph for all functions within the base smart sensor API.

The traversability data are registered in the grid by utilizing the platform orientation

data. Upon startup, the base smart sensor spawns a thread (Figure 3-9) to handle

asynchronous position updates from either the smart sensor arbiter or directly from the

reactive planner component

Figure 3-9. Call graph for smart sensor communications receive thread

The rotations Ψ, θ, and φ, as shown in Figure 3-5, as well as the sensor’s offset

from the vehicle’s coordinate system are used in the homogenous transformation of the

49

data from the sensor’s coordinate system to the grid coordinate system. Equation 3-1

shows the compound transformations necessary for this. The xoffset, yoffset, and zoffset values

all represent the offset of the sensor coordinate system from the vehicle’s coordinate

system. It is assumed that sensor is aligned such that there is no rotational difference

between the two coordinate systems, only translation. The xsensor, ysensor, and zsensor values

represent the coordinates of a point as read from the sensor in the sensor’s coordinate

system; xvehicle, yvehicle, and zvehicle are the coordinates of the point after transformation to

the vehicle coordinate system.

⋅

−
⋅

 −

⋅

−

⋅

=

11000
0cos0sin
0010
0sin0cos

1000
0100
00cossin
00sincos

1000
0cossin0
0sincos0
0001

1000
100
010
001

1
sensor

sensor

sensor

offset

offset

offset

vehicle

vehicle

vehicle

z
y
x

z
y
x

z
y
x

φφ

φφ
ψψ
ψψ

θθ
θθ (3-1)

To synchronize the position of the grid map, the existing cell data are shifted such

that the vehicle is always located in the center of the raster grid. The benefit of shifting

the cell data is that it provides a limited short-term memory of the area directly local to

the vehicle.

It is assumed that the position and orientation data are fairly accurate and precise.

If they are not, proper data registration will not be attained. Research is currently taking

place to find ways of handling this problem, but this is outside the scope of this work.

This is not an issue within this system because all smart sensors use the same position

and orientation updates. Therefore any errors introduced due to loss of position system

precision or accuracy will be present in all of the smart sensors’ data.

Once the grid has been shifted, the sensor specific data may be entered into the

traversability grid as if it were a local traversability sensor, i.e. no global position or

orientation data. When the smartSensorTransformPoint() function is called, it handles

50

converting the data from sensor coordinates to vehicle coordinates and finally to world

coordinates. This transformation is shown in Equation 3-1.

Figure 3-10. Call graph for function that determines number of rows and columns to shift
the traversability grid based on the current and previous positions

Figure 3-11 shows the call graph for the sensorSpecificThread(). This thread

name is established in the base smart sensor and is common to all smart sensors. The

internal implementation of the interface to the sensor within this thread is dependent on

the sensor modality and is left to the smart sensor implementer.

Figure 3-11. Call graph for sensor specific interface thread.

Once updates have been made to the base smart sensor-based traversability grid,

the main thread causes the grid to be checked for changes. These changes are transmitted

via the smartSensorSendCellUpdates() function, as shown in Figure 3-12, and its

access to the UDP/IP transport layer.

The next section details the implementation of a stereo vision based smart sensor.

While the method described in this section is specific to the stereo vision system, the

51

power of the smart sensor approach is that this sensor specific interface is abstracted out.

This means that as long as a sensor implementer uses the same grid parameters,

interfacing to the base smart sensor will be trivial.

Figure 3-12. Call graph for function used to detect changes in the traversability grid and
transmit these changes to the smart sensor arbiter

3.5 Smart Stereo Vision Sensor Implementation

Like all CIMAR smart sensors, the smart stereo vision sensor builds on the base

smart sensor module. It is based on the Videre Design STH-MD1-C stereo vision camera

system and the SRI Small Vision System.

3.5.1 Stereo vision Hardware

The Videre Design STH-MD1-C, shown in Figure 3-13, is a high resolution, wide

baseline stereo vision camera system. It consists of two CMOS imagers and an IEE1394

(Firewire) interface for transferring the digital images to the computer doing the stereo

processing.

3.5.2 Stereo Vision Software

To handle the tasks of camera calibration, image rectification, and stereo

correlation, the SRI Small Vision System (SVS) is used. SVS provides an application

programmer’s interface to its internal implementation of the functions necessary for

stereo processing [35]. This system is available for both Linux and Windows based

systems. Figure 3-14 shows a rectified stereo image pair from the Videre system. The

output of SVS’s processing is shown below the stereo pair. In this image brighter pixels

52

correspond to smaller distances. Conversely, darker pixels correspond to larger distances

as calculated by stereo correlation.

Figure 3-13: Videre Design STH-MD1-C stereo camera head (left)

3.5.3 Smart Stereo Vision Sensor

The base smart sensor handles all of the low level functionality of the smart sensor.

Because of this, the smart stereo vision sensor has to only provide an instantaneous

indication of the region traversability within the area local to the vehicle. To handle the

tasks of camera calibration, image rectification, and stereo correlation, the SRI small

vision system (SVS) is used.

A check of the range resolution was done at the range specified by the Team

CIMAR perception team. The following equation relates the range resolution to the

camera parameters as:

53

 ∆ r
r

b f
d=

⋅
⋅

2

 (3-2)

where ∆r is the resolution at range r, b is the baseline of the stereo vision camera system,

f is the focal length of the camera lenses, and d is the smallest disparity perceivable by the

stereo vision system. For this sensor system’s STH-MD1, the baseline was 200

millimeters, the focal length was 12.5 millimeters, and the smallest disparity perceivable

was 0.46875e-3 millimeters. A graph of range versus range resolution is shown in Figure

3-16 [35]. As can be seen in the figure, at a range of the 30 meters, the range resolution

is approximately 17 mm – not a problem at all considering that the grid resolution is

constant at 0.5 meters per cell.

A B

C

Figure 3-14: Source data and results from stereo correlation. A) Left image. B) Right
image. C) Disparity image.

54

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Range to Object as Measured with Rule [m]

R
an

ge
 to

 O
bj

ec
t a

s
M

ea
su

re
d

w
ith

 S
te

re
o

V
is

io
n

S
ys

te
m

s
[m

]

Figure 3-15. Graph of range determined from stereo vision system vs. actual measured

range

Region traversability value judgment is based on an assessment of the three

dimensional data provided by the stereo vision system. A method for fast obstacle

classification based on allowable slope is presented in [15]. This is shown in Equation

3-3.

()

() () ()
()

z z

x x y y z z

k g

k g k g k g

−

− + − + −
≥2 2 2

2sin α (3-3)

In this equation (xg, yg, and zg) represent the coordinates of a known ground point and (xk,

yk, and zk) represent the coordinates of sensed point in space. The maximum allowable

angle is represented by α. This method analyses each point within the sensor data to

determine whether or not it represents a traversable region.

55

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

Object Range in Left Camera Coordinate System [m]

R
an

ge
 R

es
ol

ut
io

n
[m

m
]

Figure 3-16. Plot of range resolution vs. range for the Videre Design STH-MD1-C with

12.5mm focal length lenses

In this work Hong et al. [15] also show that it is possible for an object to fail this

test, but still be an obstacle because of the object’s height. The following test, Equation

3-4, checks for this condition, by considering the height of the object above the ground

plane. If an object is too tall for the vehicle to drive over, then it is classified as an

obstacle. The constant H in Equation 3-4 sets this threshold.

 z z Hk g− < (3-4)

Because the smart stereo vision system is based on accumulated instantaneous

sensor readings, the ground point used in (3.3) is the origin of the vehicle projected onto

the plane defined by the intersection of the vehicle’s tires and the ground plane. By

establishing this point as the origin of the vehicle’s coordinate system, the terms xg, yg,

and zg drop out of the equation. Therefore for the instantaneous sensor reading, the

obstacle check is based on Equation 3-5.

56

 ()z
x y z

k

k k k
2 2 2

2

+ +
≥ sin α (3-5)

The base smart sensor API is used to perform the conversion from three-

dimensional world coordinates to two dimensional grid coordinates. Because the base

smart sensor has access to the current position and orientation of the vehicle, the offsets

of the vehicle and sensor coordinate systems, and the range and resolution of the

traversability grid, it is able to provide the smart stereo vision system a transformation

from world coordinates directly to grid coordinates.

To update data within the local traversability grid, a method for updating the

traversability grid was established based on the work by [20]. This implementation of a

local occupancy grid uses a simpler approach for grid updating. They based their

updated method on the observation that stereo errors are systemic and are not easily

modeled probabilistically. This is because stereo vision systems are dependent of the

visual properties of the environment. For example, as lighting and texture conditions

change, the performance of the stereo matching process may improve or degrade.

Because of this a probabilistic model of the stereo vision system may not be the same as

under ideal conditions. Similar to the grid cell properties established in Section 3.3.2.2,

Murray and Little’s [20] method uses a one byte per cell representation with an unknown

state represented by the value 127.

 IF i ∈ TRAVERS(r) THEN G(i) = G(i)+Kt ELSE G(i) = G(i)-Knt (3-6)

An extension of their work was developed for use in the smart stereovision system

traversability grid. This is method updates cells based on Equation 3-6. As in Murray

and Little’s implementation, i represents a location within the grid –in this case the

traversability grid, r is a reading from the stereo vision sensor, TRAVERS() is the

57

operator that determines if the sensor reading represents a traversable point, G(i) is the

traversability grid value at location i, Kt and Knt are constants used to, respectively,

increment and decrement the traversability cell value. The addition of Kt and Knt is a

departure from Murry and Little’s approach where a single constant is used. By having

separate constants, emphasis can be placed on either maintaining clean data with slower

response times for detecting obstacles or vise versa. To bias one approach over the other,

the associated incrementing constant is made larger than the other. Otherwise the

constants should be equal.

3.6 Use of Obstacle Detection and Free Space Sensors

As mentioned previously, the purpose of the Smart Sensor Architecture is to

generate a model of the world local to the vehicle to support the task of obstacle

avoidance. Since all sensor modalities do not provide high-resolution data within their

fields of view, an important distinction is made between different types of sensors. They

are classified as free space detectors, obstacle detectors, or a combination of both.

While highly accurate with respect to presence within a zone, the issue is that when

trying to use this for obstacle detection, the entire zone would have to be classified as an

obstacle because of the lack of granularity in the sensor field. Rather than considering

the radar unit an obstacle detector, it is viewed as a free space detector. If the radar unit

indicates that there is no object in a particular zone, it can be assumed that the entire zone

is clear. It follows that if the radar until indicates that all zones are clear then there is a

fast, computationally inexpensive method of classifying the entire sensor field of view as

clear and traversable. The associated cells are updated to correspond to this

classification. Sensors with high resolution such as the stereo vision system or the

58

LADAR sensor presented in chapter two can be used to detect free space as well as

objects.

3.7 Smart Sensor Arbiter Implementation

The smart sensor arbiter also builds on the base smart sensor module. The initial

implementation of the arbiter is minimalist. Because position and orientation updates

from the JAUS network are sent through the smart sensor arbiter down to all of the smart

sensor components, the arbiter knows its current position. As grid cell updates come in

from the smart sensors, each message has a latitude and longitude position stamp

indicating the origin of the cell updates. Using the Universal Transverse Mercator

projection, the latitude and longitude based coordinate values are converted to Cartesian

coordinates within a UTM zone. The arbiter then does the same conversion using the

coordinates of the vehicle’s current location. The difference in the vehicle position and

the origin of the grid cell updates is converted to an offset of grid coordinates (rows and

columns). This offset is simply applied to each grid cell update.

This approach is acceptable in this situation because, while they are distributed

systems, all smart sensors use position data from single position system. If each smart

sensor were on a different subsystem with independent position systems, then this

approach would have to be modified because of accuracy and precision issues.

As the data within the smart sensors’ grids change, they transmit corresponding

traversability grid updates. To fuse the data from the smart sensors, the arbiter uses the

method shown in Equation 3-7.

 (3-7) G i w cell update row row offset col col offsetn i i
n

num smart sensors

() _ (_ , _
_ _

= ⋅ − −
=
∑

1
n)

59

where G(i) is the value of the fused traversability grid cell at the grid position i. The

constant wn represents a weight associated with data from smart sensor n.

Consider the case of a smart sensor system consisting of stereo vision based smart

sensor and a RADAR based smart sensor. If the RADAR is considered a free space

detector and is limited to that traversable range for cell updates, then when the RADAR

unit classifies a pixel as free, it is highly probable that the RADAR’s data would always

be more accurate than the stereo vision system, which is subject to the systemic errors

discussed by [20]. Therefore weighing the RADAR data more than the stereo data would

put more emphasis on the high quality RADAR data. This is only true when the RADAR

is used as a free space detector. If the RADAR were used as an obstacle detector, then it

would adversely affect the quality of the fused data from the stereovision system.

The Region Clutter Sensor is a quasi-component embedded in the smart sensor

arbiter. This component simply applies a non-traversable region threshold to the values

within a region of the traversability grid. As the saturation of non-traversable regions

increases, the vehicle makes the appropriate changes in velocity necessary to allow

successful negotiation of area. This component is only present in the arbiter, so when a

smart sensor replaces the arbiter, this functionality is lost.

CHAPTER 4
JAUS WORLD MODEL KNOWLEDGE STORES

The previous chapter presented a detailed description of the smart sensor

architecture and the implementation of a stereovision based smart sensor unit. The smart

sensor architecture message set defines a standard logical interface that allows data to be

shared between the components of a perception system. While this interface is

acceptable to meet the synchronization requirements of the smart sensor architecture’s

traversability grids, it is not general enough to support the sharing of data based on the

raster and vector modeling methods presented in Chapter 2. Building on the reviewed

literature as well as on lessons learned from developing the smart sensor architecture, this

chapter introduces standard modeling and input/output methods for world model

knowledge stores.

A world model knowledge store is to be the central geospatial data store for a

JAUS component, node, subsystem, or system. The knowledge store provides only

geospatial data storage and access methods. Therefore, no processing or higher level

functionality should be provided by the knowledge store. It is the most primitive world

modeling component and forms the foundation for all future world model components.

These future components will extend the world modeling capabilities of JAUS by

providing functions such as value judgment, simulation, prediction, etc. as described by

Mystel [18].

60

61

Similar to the smart sensors in Chapter 3, the world model knowledge stores are

envisioned as location independent, modular JAUS components. Because of this, it is

possible to have multiple subsystems accumulating data in a global world model

knowledge store or to have individual subsystems accumulate data in their own world

model knowledge stores and then have synchronization of those stores. The data within

these stores may be either persistent or volatile. This will not be specified as it is an

implementation issue.

4.1 Observations and Recommendations

Chapter 2 showed that there is a considerable amount of commonality between the

numerous types of data that are available in a priori data stores and the types of data that

may be accumulated in real-time. The main two classes of data types are raster and

vector data. Raster data may consist of elevation, geo-referenced orthoimages, density

maps, occupancy grids, traversability grids, etc. Vector data may consist of digital road

maps, polygon maps, etc. By enforcing some constraints, it is possible to distill these

data into a common format that may be used by unmanned systems community.

From the preceding chapters, a number of key observations were made about the

current methods for accessing and sharing real time and a priori geospatial data. These

are that:

• The level of complexity of modeling methods designed for a priori data-sharing
(such as SDTS and GML) is well beyond what is necessary for JAUS based
unmanned systems.

• There are a number of different projections that may be used to transform data from
geodetic coordinates to a two or two and a half dimensional surface.

• Current world modeling methods are, at their core, based on either raster or vector
primitives.

62

• For real-time world modeling on unmanned vehicles, raster methods are used most
often.

• Both vector and raster modeling methods are commonly used in a priori data
stores.

• Most a priori data stores include metadata which have extra information about the
stored data.

Therefore it is recommended that at a minimum the initial JAUS World Model

standard should:

• Provide the ability for JAUS based subsystems, nodes, and/or components to share
geospatial data with minimal complexity.

• Allow developers some degree of flexibility within the constraints of the standard.

• Specify a map projection and horizontal and vertical datums to be used within the
knowledge stores.

• Allow for use and transfer of a priori and real-time raster and vector data.

• Provide a mechanism to allow distinguishing between different types of geospatial
data.

• Provide a means for saving and sharing information about the geospatial data
within the knowledge store.

• Meet the standard JAUS requirements for definition of new components.

A JAUS World Model Knowledge Store standard should not be concerned with the

method of modeling data internal to the system, but with how the data are formatted and

presented to other JAUS components that use or store geospatial data. The work done on

the smart sensor architecture as well as past experiments with JAUS interoperability has

shown that as component interfaces become more complex, it becomes increasingly

difficult to achieve true interoperability. The approach with the message set presented

herein is to develop a method of sharing the data at the most primitive levels.

Complexity has been limited so as to provide to the many organizations that make up the

63

JAUS Working Group a more acceptable and undemanding initial standard. As the

geospatial data-sharing requirements of the group change, so too will the standard.

Standards inherently impose limitations and this must be accepted. However,

standards that are too restrictive run the risk of losing of support. Therefore the JAUS

World Model Knowledge Store standard is developed to be as flexible as reasonably

possible. The messages are also designed to be as extensible as is possible within the

JAUS framework. This standard and all future world modeling component standards

should be considered living documents that are able to quickly change to meet the needs

of system developers. The JAUS working group’s review process will assure that the

changes that are made are only those that are applicable to the group as a whole.

Geospatial data transferred from different systems must use the same map

projections, ellipsoidal Earth model, and horizontal and vertical datum. For the global

coordinates, JAUS specifies that all systems use the World Geodetic System 1984

(WGS84). The map projection will be the Universal Transverse Mercator Projection.

Vertical measurements will be based on the vertical datum as established by the

ellipsoidal model of the Earth. Since most of the systems will be operating in the United

States, the horizontal with be the North American Datum as established in 1983

(NAD83).

 Chapter 2 showed that real-time world modeling methods typically use tessellated

raster data structures and a priori world modeling methods use ether raster or vector data

structures. Therefore a message set has been developed to support two types of

knowledge stores: the World Model Raster Knowledge Store and the World Model

Vector Knowledge Store.

64

The World Model Raster Knowledge Store provides a method for storage and

sharing of raster formatted geospatial data within a JAUS system. Many unmanned

systems with perception systems utilize a form of the local occupancy grid as introduced

by Elfes [13]. The local occupancy grid is implemented as a tessellated geo-referenced

grid. The World Model Raster Knowledge Store is a generalization of such a local

occupancy grid. It is desired to have this knowledge store support most types of raster

data. These include binary image, grey scale images, RGB images, digital elevation

model (DEM) data, traversability, occupancy, etc. Typically an occupancy grid stores a

value corresponding to a truth metric in each cell. When raster data are stored such that

each cell represents a height at that location (such as DEM data), this is referred to as two

and a half (2.5) dimensions [21].

Storage and sharing of spatial data such as points, lines, polylines, or polygons is

supported by the World Model Vector Knowledge Store. These vector formatted spatial

data provides a number of benefits. The primary benefit of such a system in the context

of JAUS is that it requires significantly less bandwidth to transmit data as compared to

the raster store. This method therefore can reduce the storage requirements within the

system.

A feature class represents a categorization of types of spatial data. For example,

occupancy, free space, objects, roads, terrain, building, etc. all represent distinct feature

classes. A geo-referenced, orthoimage may also represent a feature class. It may be

more intuitive to consider these feature classes as different layers of geospatial data

within the knowledge store. This is important because it allows different types of spatial

data to be handled separately. Predefined feature classes will eventually be defined by

65

the JAUS World Model Subcommittee in the interest of true world model

interoperability. Since it is not possible to define all types of feature classes a priori, a

sizeable amount of space has been set aside for user defined feature classes. While this

does have an adverse effect on interoperability, this is mitigated by having system

developers provide each other with a data dictionary when they wish to interoperate. The

data dictionary is simple a description of which types of data correspond to a feature class

identifier. Even with the predefined feature classes, when testing interoperability system

developers must establish the data types that they are using within the knowledge store.

It is possible that this exchange could be handled during the discovery process provided

in the forthcoming JAUS dynamic configuration and registration extensions

To allow dissemination of information about a feature class, the world model

framework provides for storage and transfer of feature class metadata. In this context,

metadata is simply text that provides general information about the data within a

particular feature class. Initially the metadata are developed to be human readable text in

a format specified by the user. Bolstad [7] gives an introduction to metadata and

discusses the Content Standard for Digital Geospatial Metadata. Just as this is considered

only a guideline for the GIS community, it is considered only a guideline for the JAUS

community. Initially these metadata are designed to be human readable and not used in

any distributed computations that may be performed on these data.

The local request identifier (LRID) is a single-byte numerical identifier attached to

certain classes of messages originating outside of the world model knowledge store. This

feature allows synchronization of messages and their associated response. This is

important because even though requests to the knowledge store may be synchronized,

66

there is no guarantee that the responses will be synchronized. By attaching the LRID, the

requesting component will be able to internally synchronize any asynchronous responses.

4.1.1 Raster and Vector Object Representation

This section describes the raster and vector objects as they should be formatted in

the JAUS messages that define the input and outputs of the knowledge stores. Special

attention must be made to assure that these conventions are followed by all components

sending data to or receiving data from the world model knowledge stores.

The data within a raster knowledge store should always maintain a north-east

orientation. Raster data in the knowledge store should be geo-referenced by defining

their origin as a single point described by the intersection of a line of latitude and a line of

longitude (WGS84). The grid parameters also include the number of rows and columns

and the grid resolution. While a grid cell is specified as a point, that point covers an area

equal to the grid resolution squared. A Cartesian coordinate system is established at the

geo-referenced point. The Cartesian coordinates of the grid cells are derived from use of

the Universal Transverse Mercator projection. The grid cells may also be referenced by

their row and column offset from the origin point. Figure 4-1 shows the format of a layer

of raster data. While cells may have negative row and column values with respect to the

grid origin, when transmitting rectangular grid data (e.g. images, DTED), the origin of

the raster data must be the point that defines the cell whose column coordinate is equal to

the column coordinate of the western most cells and whose row coordinate is equal to the

row coordinate of the southern most cells. Therefore when transmitting a rectangular

array of raster data, there will be no cell values with coordinates less than zero.

67

Figure 4-1. Definition of raster grid parameters and coordinate system

For the vector knowledge store, objects are represented as points, lines and

polylines, and polygons. The coordinates of these points are defined by a point of

latitude and longitude (WGS84). Polylines and polygons may consist of up to 65535

vertices. Figure 4-2 shows the format of these vector objects. Rather than assigning

these points Cartesian coordinates with respect to an arbitrarily chose datum, each vertex

is expressed as a point of latitude and longitude.

The vector objects on the right of Figure 4-2 have a buffer parameter. The buffer

parameter establishes a radial region around each vector object vertex and connects the

radial regions of two or more radial regions by drawing lines at their tangents. The area

within these radial regions and tangent lines are considered to be within the vector

68

object’s buffer zone. This feature allows a region to be established in proximity to the

vector objects. For example, United States Geological Survey (USGS) road data is

presented in vector form representing the center-line of such roads. It may be useful to

do a search within the perimeter along a particular route defined in the USGS digital line

graph data. For simple cases, it may be possible to generate a polygonal representation of

the area around the road. Establishing this polygon will require transmitting the

coordinates of each of its vertices. As the problem scales up, this method becomes very

inefficient. A better solution to this problem would be to determine the route using the

USGS digital line graph data and assign a region buffer to each line segment. The region

buffer is defined as an offset distance in meters. The spatial buffer is established by

defining a radius from each point on the vector object. For many cases, this buffer will

be a simple offset with the exception of point objects and along non-smooth contours.

Figure 4-2 shows these cases. If the system designer requires finer control over this

region, they may define the buffer using the aforementioned polygonal representation.

4.2 World Model Knowledge Store Message Set

The following sections present the initial draft message set for the first two JAUS

World Modeling components. This message set is based on a review of the current

methods of modeling spatial and geospatial data as presented in Chapter 2. These

methods are distilled into their most basic form and codified into a standard consistent

with the JAUS framework.

69

Figure 4-2. Definition of vector objects and parameters

70

4.2.1 JAUS Core Input and Output Message Sets

Support for the JAUS core message set is required by the current version of the

JAUS Reference Architecture (RA). The JAUS Core Message Set consists of the

following messages:

• Code 0001h: Set component authority
• Code 0002h: Shutdown
• Code 0003h: Standby
• Code 0004h: Resume
• Code 0005h: Reset
• Code 0006h: Set emergency
• Code 0007h: Clear emergency
• Code 0008h: Create service connection
• Code 0009h: Confirm service connection
• Code 000Ah: Activate service connection
• Code 000Bh: Suspend service connection
• Code 000Ch: Terminate service connection

While the JAUS RA does require that these messages be accepted by all

components, there is no requirement that components have an action associated with each

input message. Because the expected behavior of components while in each state is

somewhat ambiguous, they will be defined for the world model knowledge stores. So too

will the message that are required to have a response.

The world model knowledge stores should have an appropriate response to the

following messages:

• Code 0002h: Shutdown
• Code 0003h: Standby
• Code 0004h: Resume
• Code 0005h: Reset
• Code 0009h: Confirm service connection
• Code 000Ah: Activate service connection
• Code 000Bh: Suspend service connection
• Code 000Ch: Terminate service connection
• Code 2002h: Query component status
• Code 4002h: Report component status

71

The Code 0002h: Shutdown message should cause the receiving knowledge store to

immediately terminate all data transfer upon receipt. If the knowledge store is

responding to a query, it should immediately terminate the flow of data and transmit the

Code F405h: Report Raster Knowledge Store Data Transfer Termination or the Code

F424h: Report Vector Knowledge Store Data Transfer Termination message to the

component whose query response was interrupted and any components with outstanding

requests. Upon termination of all data transfer, the world model should execute its

specific shutdown routine and then halt. It should no longer respond to any data requests

and should require a hard reset in order to resume operation.

The Code 0003h: Standby message should cause the receiving knowledge store to

respond as if it had received the Code 0002h: Shutdown message. The exception is that

the knowledge store should not halt. It should respond only to the Code 0004h: Resume

and Code 0005: Reset messages. Upon resumption to the ready state, the knowledge

store should resume normal operations. It should not resume any suspended query

responses.

The Code 0005h: Reset message should cause the receiving knowledge store to

immediately terminate the transfer and processing of any data. The knowledge store

should transmit to all components with outstanding requests or data transfers the Code

F405h: Report Raster Knowledge Store Data Transfer Termination or the Code F424h:

Report Vector Knowledge Store Data Transfer Termination message. The knowledge

store should them immediately restart and return to the ready state. Terminated data

transfers should not resume.

72

The Codes 0009h: Confirm Service Connection, 000Ah: Activate Service

Connection, 000Bh: Suspend Service Connection, 000Ch: Terminate Service Connection,

2002h: Query Component Status and 4002h: Report Component Status messages should

all invoke that typical JAUS response associated with their receipt.

4.2.2 Raster Knowledge Store Input Message Set

In the following subsections are the messages that define the input to the raster

version of the world model knowledge store. These command, query, and event setup

class messages are transmitted in order to initiate an appropriate inform or event

notification class message output. These outputs messages are defined in Section 4.2.3.

The inputs to the raster knowledge store are:

• The JAUS core input message set
• Code F000h: Create raster knowledge store object
• Code F001h: Set raster knowledge store feature class metadata
• Code F002h: Modify raster knowledge store object (cell update)
• Code F003h: Modify raster knowledge store object (grid update)
• Code F004h: Delete raster knowledge store objects
• Code F200h: Query raster knowledge store objects
• Code F201h: Query raster knowledge store feature class metadata
• Code F202h: Query raster knowledge store bounds
• Code F600h: Raster knowledge store event notification request
• Code F601h: Raster knowledge store bounds change event notification request
• Code F005h: Terminate raster knowledge store data transfer

4.2.2.1 Code F000h: Create raster knowledge store object

The Code F000h: Create Raster Knowledge Store Object message (Table 4-1) is

used to create and initialize a layer of feature class data within the raster knowledge store.

In order for data to be added to the feature class, the feature class layer must first be

created.

The origin of the raster grid must be geo-referenced by specifying its origin in

fields 4 and 5 as a point of latitude and longitude. Extents of the layer must also be

73

specified as a number of rows and columns in fields 7 and 8. Both the data types that

describe the number of rows and columns and the cell attribute type are variable and must

also be specified in fields 6 and 11, respectively. The grid cell resolution is also specified

in field 9. Because this message is used to create a feature class layer, the feature class

must be specified using field 10.

This message has a single optional field (field 11). Inclusion of this optional field

is determined from the state of bit zero in the message presence vector (Table 4-2). If the

bit zero is set, then the value in field 12 shall be used to initialize all cells within the

feature class.

When the feature class layer is initialized using this message, the data are filled in

the grid on a row by row basis starting at the southern most row and moving north. It is

filled beginning at the southwestern most point moving east.

Table 4-1. Create raster knowledge store objects message format
Field # Name Type Units Interpretation
1 Message

Properties
Byte N/A Bit Field

0: Request confirmation of
 object creation
1 – 7: Reserved

2 Message
Properties

Byte N/A Bit Field
0: Request confirmation of
 object creation

3 Local
Request ID

Byte N/A Request identifier to be used
when returning confirmation to
requesting component

4 Origin
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

5 Origin
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

74

Table 4-1. Continued
Field # Name Type Units Interpretation
6 Raster Data

Row and
Column
Data Type

Byte N/A Enumeration
0: Byte
1: Reserved
2: Reserved
3: Reserved
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7 – 255: Reserved

7 Raster Grid
Update
Rows

Varies (See
field 4)

Grid Cells

8 Raster Grid
Update
Columns

Varies (See
field 4)

Grid Cells

9 Cell
Resolution

Float Meters

10 Feature
Class

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 - Reserved

11 Raster Cell
Data Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7: Float
8: Long Float
9: RGB (3 Bytes)
10 – 255: Reserved

12 Initial Value
for Raster
Grid Cells

Varies (see
field 11)

N/A

Table 4-2. Presence vector for create raster knowledge store objects message

Vector to Data Field Mapping for Above Command
Vector Bit 7 6 5 4 3 2 1 0
Data Field R R R R R R R 12

75

4.2.2.2 Code F001h: Set raster knowledge store feature class metadata

As described in Section 4.1, metadata are data about data. The Code F001h: Set

Raster Knowledge Store Feature Class Metadata (Table 4-3) message allows a user to

create, modify, and erase feature class metadata. At the present time the format of these

metadata is not specified. It is left to the system designer to develop a convention for

doing this. Initially these data are to be used by the human operators. In the future a

schema may be defined so as to provide a standard metadata format that may be parsed

and the data used by unmanned systems without human intervention.

Table 4-3. Set raster knowledge store feature class metadata message format
Field # Name Type Units Interpretation
1 Metadata

Options
Byte N/A Enumeration

0: Append
1: Prepend
2: Overwrite
3 – 254: Reserved
255: Erase All

2 Feature
Class

Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – Reserved

3 Number of
String
Characters

Unsigned
Short
Integer

N/A 0 … 65,535

This field should be equal to
zero only when Field 1 is equal
to 255 (Erase All)

4 Metadata String N/A Variable length string

4.2.2.3 Code F002h: Modify raster knowledge store object (cell update)

The Code F002h: Modify Raster Knowledge Store Object (Cell Update) message

(Table 4-4) is used to change data within a raster knowledge store feature class layer.

This message can only be used on a layer that has been created within the raster

knowledge store. This method is specified as a cell update version because it allows

76

modification of the raster grid on a cell by cell basis. This message has no optional

fields.

The origin of the raster grid cell updates must be geo-referenced by specifying its

origin in fields 2 and 3 as a point of latitude and longitude. Both the data types that

describe the update row and column and cell attribute are variable and must also be

specified in fields 4 and 7, respectively. The grid cell update resolution is also specified

in field 5. Because this message is used to modify a feature class layer, the feature class

must be specified using field 6. The data type for the field that specifies the number of

cell updates included in the message (field 9) is also variable and is defined in field 8.

Each cell update is a three-tuple representing the cell update’s row, column, and update

attribute value.

Table 4-4. Modify raster knowledge store object (cell update) message format
Field # Name Type Units Interpretation
1 Local

Request ID
Byte N/A Request identifier to be used

when returning confirmation to
requesting component

2 Origin
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

3 Origin
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

4 Raster Data
Row and
Column
Data Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7 – 255: Reserved

5 Cell
Resolution

Float Meters

77

Table 4-4. Continued
Field # Name Type Units Interpretation
6 Feature

Class
Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
Class Table
65,535 - Reserved

7 Raster Cell
Data Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7: Float
8: Long Float
19: RGB (3 Bytes)
10 – 255: Reserved

8 Data Type
for Number
of Cell
Updates

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7 – 255: Reserved

9 Number of
Cell
Updates

Varies (see
field 8)

N/A

10 Raster Cell
Update 1
Row

Varies (see
field 4)

N/A

11 Raster Cell
Update 1
Col

Varies (see
field 4)

N/A

12 Raster Cell
Update 1
Data

Varies (see
field 7)

Varies with
Feature
Class

…
…
…
3n + 7 Raster Cell

Update n
Row

Varies (see
field 4)

N/A

78

Table 4-4. Continued
Field # Name Type Units Interpretation
3n + 8 Raster Cell

Update n
Col

Varies (see
field 4)

N/A

3n + 9 Raster Cell
Update n
Data

Variable
(see field
7)

Varies with
Feature
Class

4.2.2.4 Code F003h: Modify raster knowledge store object (grid update)

The Code F003h: Modify Raster Knowledge Store Object (Grid Update) message

(Table 4-5) is similar to the Code F002h: Modify Raster Knowledge Store Object (Cell

Update) message in that it permits change of grid cell values. It differs from that method

in that rather than transmitting single cell updates, an entire rectangular patch of cells is

updated. As the number of cells that need to be modified increases, this method becomes

more efficient than the cell update method.

The origin of the raster grid update must be geo-referenced by specifying its origin

in fields 2 and 3 as a point of latitude and longitude. Both the data types that describe the

update row and column and cell attribute are variable and must also be specified in fields

4 and 9, respectively. Fields 5 and 6 specify the number of rows and columns of raster

grid updates being transmitted. The grid cell update resolution is also specified in field 7.

Because this message is used to modify a feature class layer, the feature class must be

specified in field 8.

Table 4-5. Modify raster knowledge store object (grid update) message format
Field # Name Type Units Interpretation
1 Local

Request ID
Byte N/A Request identifier to be used

when returning confirmation to
requesting component

2 Origin
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

79

Table 4-5. Continued
Field # Name Type Units Interpretation
3 Origin

Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

4 Raster Data
Row and
Column
Data Type

Byte N/A Enumeration
0: Byte
1: Reserved
2: Reserved
3: Reserved
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7 – 255: Reserved

5 Raster Grid
Update
Rows

Varies (See
field 4)

Grid Cells

6 Raster Grid
Update
Columns

Varies (See
field 4)

Grid Cells

7 Cell
Resolution

Float Meters

8 Feature
Class

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 - Reserved

9 Raster Cell
Data Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7: Float
8: Long Float
19: RGB (3 Bytes)
10 – 255: Reserved

10 Raster Cell
Update 1

Varies (see
field 9)

N/A

11 Raster Cell
Update 2

Varies (see
field 9)

N/A

…
9 + n Raster Cell

Update n
Varies (see
field 9)

N/A

80

Table 4-5. Continued
Field # Name Type Units Interpretation
10 + n Raster Cell

n+1
Varies (see
field 9)

N/A

4.2.2.5 Code F004h: Delete raster knowledge store objects

The Code F004h: Delete Raster Knowledge Store Object message (Table 4-6) is

used to free all resources allocated to a feature class layer within the raster knowledge

store. In order to resume accumulation of data within the deleted feature class, the

feature class layer must be recreated using the Create Raster Knowledge Store Object

message. The message allows a single feature class or all feature classes to be deleted in

one message.

Table 4-6. Delete raster knowledge store objects message format
Field # Name Type Units Interpretation
1 Presence

Vector
Byte N/A See mapping table below

2 Local
Request ID

Byte N/A Request identifier to be used
when returning confirmation to
requesting component

3 Number of
Feature
Classes

Byte N/A

4 Feature
Class 1

Short
Integer

N/A Enumeration
0 … 65,534 – See Feature
 Class Table
65,535 – ALL

… … … … …
3 + n Feature

Class n
Short
Integer

N/A Enumeration
0 … 65,534 – See Feature
 Class Table
65,535: Reserved

4.2.2.6 Code F200h: Query raster knowledge store objects

The Code F200h: Query Raster Knowledge Store Objects message (Table 4-7)

provides access to data within the raster knowledge store. Field 1 of this message is the

message presence vector (Table 4-8). The optional fields in this message are fields 4, 5,

81

and 6. Field 2 is the Query Response Properties bit field. When bit zero is clear, the

response to the query should only include the number of records that would be returned.

When bit one is set, the query response shall be the Code F402h: Report Raster

Knowledge Store Objects (Cell Update) message. Otherwise, the Code F403h: Report

Raster Knowledge Store Objects (Grid Update) message shall be sent. Field 3 is the

message Local Request Identifier. This field allows synchronization of message

responses. Field 4 is the Raster Query Resolution. This field allows the querying

component to specify the cell resolution to be used in the response to the query. If this

resolution does not match the native resolution of the queried knowledge store, then the

knowledge store should either sub-sample or interpolate the data to obtain the desired

resolution. This field is optional. Field 5 specifies a specific feature class to be queried.

This field is optional. If a feature class is not specified, then the query should be done on

all feature classes within the knowledge store. Fields 6 through 9 specify two points of

latitude and longitude that limit the range of the query. These fields are optional. If

presence vector bit two is set, then fields 6 through 9 shall all be included. Otherwise,

they should not.

Table 4-7. Query raster knowledge store objects message format
Field # Name Type Units Interpretation
1 Presence

Vector
Unsigned
Short Integer

N/A See mapping table below

2 Query
Response
Properties

Byte N/A Bit Field
0: Only return number of
 responses that would be
 transmitted
1: Return cell update 3 tuples
 or raster scan (active low)
2 – 7: Reserved

3 Local
Request ID

Byte N/A Request identifier to be used
when returning data to
requesting component

82

Table 4-7. Continued
Field # Name Type Units Interpretation
4 Raster

Query
Resolution

Float Meters

5 Feature
Class

Unsigned
Short Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – All Feature Classes

6 Query
Region
Point 1
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

7 Query
Region
Point 1
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

8 Query
Region
Point 2
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

9 Query
Region
Point 2
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

Table 4-8. Presence vector for query raster knowledge store objects message

Vector to Data Field Mapping for Above Command
Vector Bit 7 6 5 4 3 2 1 0
Data Field R R R R R 6 5 4

4.2.2.7 Code F201h: Query raster knowledge store feature class metadata

The Code F201h: Query Raster Knowledge Store Feature Class Metadata message

(Table 4-9) should cause the Raster Knowledge Store to reply to the requestor with the

Code F402h: Report Raster Knowledge Store Feature Class Metadata. There is a single

field associated with this message. This field specifies the feature class metadata to

83

return in the reply. There is also an option to return metadata for all feature classes

present in the queried raster knowledge store.

Table 4-9. Query raster knowledge store feature class metadata message format
Field # Name Type Units Interpretation
1 Feature

Class
Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – All

4.2.2.8 Code F202h: Query raster knowledge store bounds

The Code F202h: Query Raster Knowledge Store Bounds message (Table 4-10) is

used to request the spatial extents of a single feature class or of all feature classes within

a raster knowledge store. The knowledge store should respond with the Code F404h:

Report Raster Knowledge Store Bounds message. The bounds are represented by two

points the represent the rectangular region that just covers all of the data within the

feature class layer or layers.

Table 4-10. Query raster knowledge store bounds message format
Field # Name Type Units Interpretation
1 Local

Request ID
Byte N/A Request identifier to be used

when returning data to
requesting component

2 Feature
Class

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – All Feature Classes

4.2.2.9 Code F600h: Raster knowledge store event notification request

The Code F660h: Raster Knowledge Store Event Notification Request message is

used to establish an event triggered query within the knowledge store. Therefore, this

message is formatted exactly the same as the Code F200h: Query Raster Knowledge

Store Objects message. That message should be referenced for the format of this

84

message. Whenever the criteria established in this message are met, depending on the

query response field of the event notification request, the raster knowledge store should

transmit either the Code F800h: Raster Knowledge Store Event Notification (Cell

Update) message or the Code F801h: Raster Knowledge Store Event Notification (Grid

Update) message.

4.2.2.10 Code F601h: Raster knowledge store bounds change event notification
request

The Code F601h: Raster Knowledge Store Bounds Change Event Notification

Request message is used to establish an event triggered response to notify the requesting

component of when the data in a feature class extends past the bounds of the data when

the initial request was sent. When the extents of the data change, the raster knowledge

store will transmit the Code F802: Raster Knowledge Store Bounds Change Event

Notification message.

4.2.2.11 Code F005h: Terminate raster knowledge store data transfer

This Code F005h: Terminate Raster Knowledge Store Data Transfer message is a

command class message that should cause the raster knowledge store to immediately

terminate the transfer of all current and outstanding data destined to the requesting

component. Upon termination, the raster knowledge store should send the requestor the

Code F405h: Report Raster Knowledge Store Data Transfer Termination message.

4.2.3 Raster Knowledge Store Output Message Set

In the following subsections are the messages that define the output of the raster

version of the world model knowledge store. These inform and event notification class

messages are transmitted in response to the command, query, and event setup class of

input messages presented in Section 4.2.2.

85

The outputs of the raster knowledge store are:

• The JAUS core output message set
• Code F400h: Report raster knowledge store object creation
• Code F401h: Report raster knowledge store feature class metadata
• Code F402h: Report raster knowledge store objects (cell update)
• Code F403h: Report raster knowledge store objects (grid update)
• Code F404h: Report raster knowledge store bounds
• Code F800h: Raster knowledge Store Event Notification (cell update)
• Code F801h: Raster knowledge store event notification (grid update)
• Code F802h: Raster knowledge store bounds change event notification
• Code F405h: Report raster knowledge store data transfer termination

4.2.3.1 Code F400h: Report raster knowledge store object creation

The Code F400h: Report Raster Knowledge Store Object Creation message (Table

4-11) is used to confirm creation of raster objects in the raster knowledge store. This

message is sent only when an object creation message is requested by setting bit zero in

the Code F000h: Create Raster Knowledge Store Object message. If this bit is set, this

message will be transmitted and the local object identifier (field 1) is set to the value sent

with the Code F000h: Create Raster Knowledge Store Raster Object message.

Table 4-11. Report raster knowledge store object creation message format
Field # Name Type Units Interpretation
1 Local

Request ID
Byte N/A Local request identifier sent by

creating component

4.2.3.2 Code F401h: Report raster knowledge store feature class metadata

The Code F401h: Report Raster Knowledge Store Feature Class Metadata message

(Table 4-12) allows access to feature class metadata stored within raster knowledge store.

It is transferred in response to the Code F201h: Query Raster Knowledge Store Feature

Class Metadata message. If the query message requests all feature classes, a separate

message should be sent for each feature class.

86

These metadata are entered using the Code F001h: Set Raster Knowledge Store

Feature Class Metadata message.

Table 4-12. Report raster knowledge store feature class metadata message format
Field # Name Type Units Interpretation
1 Feature

Class
Short
Integer

N/A Enumeration
0 … 65,535 - See Feature
 Class Table

2 Number of
String
Characters

Unsigned
Short
Integer

N/A 0 … 65,535

3 Metadata String N/A Variable length string

4.2.3.3 Code F402h: Report raster knowledge store objects (cell update)

The Code F402h: Report Raster Knowledge Store Objects (Cell Update) message

(Table 4-13) is sent in direct response to a Code F200h: Query Raster Knowledge Store

Objects message if and only if bit two of the bit field in message field two is set.

Otherwise, the Code F403h: Report Raster Knowledge Store Objects (Grid Update)

message is transmitted. If bit one of field two of the Code F200h: Query Raster

Knowledge Store Objects message is set, then only the first two fields of this message

shall be transmitted. Field 1 of this message is Local Request Identifier sent with the

query that initiated this report message. Field 2 notifies the receiving component of the

number of records included in the report message. Fields 3 and 4 establish the geodetic

origin (latitude and longitude) of the cell updates included in the message. Both the data

types that describe the update row and column and cell attribute are variable and are

specified in fields 5 and 8, respectively. Field 6 is the resolution of the raster grid

updates reported in the message. Field 7 is the feature class that raster data are assigned

to.

87

Table 4-13. Report raster knowledge store objects (cell update) message format
Field # Name Type Units Interpretation
1 Local

Request ID
Byte N/A Request identifier sent with

initial request
2 Number of

Responses
Unsigned
Short
Integer

N/A 0 … 65,535
Number of Responses
Included on this Report
Message

3 Origin
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

4 Origin
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

5 Raster Data
Row and
Column
Data Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7 – 255: Reserved

6 Cell
Resolution

Float Meters

7 Feature
Class

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
Class Table
65,535 - Reserved

8 Raster Cell
Data Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7: Float
8: Long Float
19: RGB (3 Bytes)
10 – 255: Reserved

88

Table 4-13. Continued
Field # Name Type Units Interpretation
9 Data Type

for Number
of Cell
Updates

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7 – 255: Reserved

10 Number of
Cell
Updates

Varies (see
field 8)

N/A

11 Raster Cell
Update 1
Row

Varies (see
field 5)

N/A

12 Raster Cell
Update 1
Col

Varies (see
field 5)

N/A

13 Raster Cell
Update 1
Data

Varies (see
field 8)

Varies with
Feature
Class

…
…
…
3n + 8 Raster Cell

Update n
Row

Varies (see
field 5)

N/A

3n + 9 Raster Cell
Update n
Col

Varies (see
field 5)

N/A

3n + 10 Raster Cell
Update n
Data

Varies (see
field 8)

Varies with
Feature
Class

4.2.3.4 Code F403h: Report raster knowledge store objects (grid update)

The Code F403h: Report Raster Knowledge Store Objects (Grid Update) message

(Table 4-14) is sent in direct response to a Code F200h: Query Raster Knowledge Store

Objects message if and only if bit two of the bit field in message field two is clear.

Otherwise, the Code F402h: Report Raster Knowledge Store Objects (Cell Update)

89

message is transmitted. If bit one of field two of the Code F200h: Query Raster

Knowledge Store Objects message is set, then only the first two fields of this message

shall be transmitted.

Field 1 of this message is Local Request Identifier sent with the query that initiated

this report message. Field 2 notifies the receiving component of the number of records

included in the report message. Fields 3 and 4 establish the geodetic origin (latitude and

longitude) of the cell updates included in the message. Both the data types that describe

the update row and column and cell attribute are variable and are specified in fields 5 and

10, respectively. Fields 6 and 7 represent the number of rows and columns of grid update

cells. Field 8 is the resolution of the raster grid updates reported in the message. Field 9

is the feature class that raster data are assigned to.

Table 4-14. Report raster knowledge store objects (grid update) message format
Field # Name Type Units Interpretation
1 Local

Request ID
Byte N/A Request identifier sent with

initial request
2 Number of

Responses
Unsigned
Short
Integer

N/A 0 … 65,535
Number of Responses Included
on this Report Message

3 Origin
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

4 Origin
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

5 Raster Data
Row and
Column
Data Type

Byte N/A Enumeration
0: Byte
1: Reserved
2: Reserved
3: Reserved
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7 – 255: Reserved

90

Table 4-14. Continued
Field # Name Type Units Interpretation
6 Raster Grid

Update
Rows

Varies (See
field 5)

Grid Cells

7 Raster Grid
Update
Columns

Varies (See
field 5)

Grid Cells

8 Cell
Resolution

Float Meters

9 Feature
Class

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 - Reserved

10 Raster Cell
Data Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7: Float
8: Long Float
19: RGB (3 Bytes)
10 – 255: Reserved

11 Raster Cell
Update 1

Varies (see
field 10)

N/A

12 Raster Cell
Update 2

Varies (see
field 10)

N/A

…
10 + n Raster Cell

Update n
Varies (see
field 10)

N/A

11 + n Raster Cell
n+1

Varies (see
field 10)

N/A

4.2.3.5 Code F404h: Report raster knowledge store bounds

The Code F404h: Report Raster Knowledge Store message format is shown in

Table 4-15. This message reports the Raster Knowledge Store bounds as a response to

the Query Knowledge Store Bounds message. In this message, the raster knowledge

91

store returns the two geographic points that represent the extents of the data within a

feature class layer or all feature class layers.

Table 4-15. Report raster knowledge store bounds message format
Field # Name Type Units Interpretation
1 Southwest

Point
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

2 Southwest
Point
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

3 Northeast
Point
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

4 Northeast
Point
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

4.2.3.6 Code F800h: Raster knowledge store event notification (cell update)

The Code F800h: Raster Knowledge Store Event Notification (Cell Update)

message is an event triggered message that is sent in response to the Code F600h: Raster

Knowledge Store Event Notification Request message. When bit two of the bit field in

that message field two is set, this message is transmitted when the conditions specified in

the event notification request are met. The format of this message is identical to that of

the Code F402h: Report Raster Knowledge Store Objects (Cell Update) message.

4.2.3.7 Code F801h: Raster knowledge store event notification (grid update)

The Code F801h: Raster Knowledge Store Event Notification (Grid Update)

message is an event triggered message that is sent in response to the Code F600h: Raster

Knowledge Store Event Notification Request message. When bit two of the bit field in

that message field two is clear, this message is transmitted when the conditions specified

92

in the event notification request are met. The format of this message is identical to that of

the Code F403h: Report Raster Knowledge Store Objects (Grid Update) message.

4.2.3.8 Code F802h: Raster knowledge store bounds change event notification

The Code F802h: Raster Knowledge Store Bounds Change Event Notification

message is an event triggered message that is sent in response to the Code F601h: Raster

Knowledge Store Bounds Change Event Notification Request message. It is transmitted

to the requesting component each time the spatial extents of a feature class or feature

classes (as specified in the event notification request message) change. The format of

this message is identical to that of the Code F404h: Report Raster Knowledge Store

Bounds message.

4.2.3.9 Code F405h: Report raster knowledge store data transfer termination

The Code F405h: Report Raster Knowledge Store Data Transfer Termination

message notifies other JAUS components that data that were being transferred or were

going to be transferred to them has been stopped. This message is sent in response to the

Code F005h: Terminate Raster Knowledge Store Data Transfer message. It is also sent

whenever data transfer is interrupted due to a change in the component state as discussed

in Section 4.2.1.

4.2.4 Vector Knowledge Store Input Message Set

Below are the messages that define the input methods to the vector version of the

knowledge store.

Inputs:

• The JAUS core input message set
• Code F020h: Create vector knowledge store objects
• Code F021h: Set vector knowledge store feature class metadata
• Code F022h: Delete vector knowledge store objects

93

• Code F220h: Query vector knowledge store objects
• Code F221h: Query vector knowledge store feature class metadata
• Code F222h: Query vector knowledge store bounds
• Code F620h: Vector knowledge store event notification request
• Code F621h: Vector knowledge store bounds change event notification request
• Code F023h: Terminate vector knowledge store data transfer

4.2.4.1 Code F020h: Create vector knowledge store objects

The Code F020h: Create Vector Knowledge Store Objects message (Table 4-16) is

used to add objects to the Vector Knowledge Store. This message allows multiple vector

objects to be created using a single message.

Field 1 of this message is the presence vector (Table 4-17). When multiple objects

are created using the same message, the presence vector shall apply to all objects.

Because there is a single presence vector associated with this message, all objects within

this message shall use this presence vector. Field 2 of this message is the creation

message properties. If bit zero is set, then the knowledge store shall return the Code

F420h: Report Vector Knowledge Store Object(s) Creation message with the local

request identifier specified in field 3. The data type that describes the vector objects’

attributes is variable and is specified in fields 4. Field 5 indicates the number of vector

objects included in the message. Fields 6 begins the definition of a single vector object.

The vector objects is defined by its type (point, line, or polygon), the number of feature

classes that it is assigned to, an attribute for each feature class, followed by the global

coordinates of the vertices of the object. These fields are repeated for each object created

using this message. Again, the presence vector applies to each vector object.

94

Table 4-16. Create vector knowledge store objects message format
Field # Name Type Units Interpretation
1 Presence

Vector
Byte N/A See mapping table below

2 Message
Properties

Byte N/A Bit Field
0: Request confirmation of
 object creation
1 – 7: Reserved

3 Local
Request ID

Byte N/A Request identifier to be used
when returning confirmation to
requesting component

4 Feature
Class
Attribute
Data Type
for Vector
Objects

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7: Float
8: Long Float
9: RGB (3 Bytes)
10 – 255: Reserved

5 Number of
Objects

Unsigned
Short
Integer

 0, reserved
1 … 65,535

6 Object 1
Type

Byte N/A Enumeration
0: Point
1: Line
2: Polygon
3 – 255: Reserved

7 Object 1
Buffer

Float Meters

8 Object 1
Number of
Feature
Classes

Byte N/A

8 Object 1
Feature
Class 1

Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – Reserved

… … … … …
 Object 1

Feature
Class m

Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – Reserved

95

Table 4-16. Continued
Field # Name Type Units Interpretation
 Object 1

Feature
Class
Attribute 1

Varies (see
field 4)

Varies
with
Feature
Class

… … … … …
 Object 1

Feature
Class
Attribute m

Varies (see
field 4)

Varies
with
Feature
Class

 Object 1
Point 1
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

 Object 1
Point 1
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

 … … … …
 Object 1

Point n
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

 Object 1
Point n
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

 Object p
Type

Byte N/A Enumeration
0: Point
1: Line
2: Polygon
3 – 255: Reserved

 Object p
Buffer

Float Meters

 Object p
Number of
Feature
Classes

Byte N/A

 Object p
Feature
Class 1

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 – See Feature
 Class Table
65,535 – Reserved

… … … … …

96

Table 4-16. Continued
Field # Name Type Units Interpretation
 Object p

Feature
Class m

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – Reserved

 Object p
Feature
Class
Attribute 1

Varies (see
field 4)

Varies
with
Feature
Class

… … … … …
 Object p

Feature
Class
Attribute m

Varies (see
field 4)

Varies
with
Feature
Class

 … … … …
 Object p

Point r
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

 Object p
Point r
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

Table 4-17. Presence vector for create vector knowledge store objects message

Vector to Data Field Mapping for Above Command
Vector Bit 7 6 5 4 3 2 1 0
Data Field R R R R R R R 7

4.2.4.2 Code F021h: Set vector knowledge store feature class metadata

As described in Section 4.1, metadata are data about data. The Code F021h: Set

Vector Knowledge Store Feature Class Metadata (Table 4-18) message allows a user to

create, modify, and delete feature class metadata. At the present time the format of these

metadata is not specified. It is left to the system designer to develop a convention for

doing this. Initially these data are to be used by the human operators. In the future a

schema may be defined so as to provide a standard metadata format that may be parsed

and the data used by unmanned systems without human intervention.

97

Table 4-18. Set vector knowledge store feature class metadata message format
Field # Name Type Units Interpretation
1 Metadata

Options
Byte N/A Enumeration

0: Append
1: Prepend
2: Overwrite
3 – 254: Reserved
255: Erase All

2 Feature
Class

Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – Reserved

3 Number of
String
Characters

Unsigned
Short
Integer

N/A 0 … 65,535

This field should be equal to
zero only when Field 1 is equal
to 255 (Erase All)

4 Feature
Class
Metadata

String N/A Variable length string

4.2.4.3 Code F022h: Delete vector knowledge store objects

The Code F022h: Delete vector knowledge store objects message (Table 4-19)

allows the deletion of objects from the vector knowledge store. This message allows

multiple vector objects to be deleted using a single message.

Field 1 of this message is the presence vector (Table 4-20). Fields 5 and 6 are the

only optional fields in this message. When they are included, they further limit the scope

of the deletion. Field 2 of this message is the Local Request Identifier. Field 3 identifies

the type of region that will be used to select the objects to delete. The number of vertices

for this region is specified in field 4. Field 5 indicates the size of the region buffer to use

with this message. Fields 7 begins the definition of vertices of the object deletion region.

98

Table 4-19. Delete vector knowledge store objects message format
Field # Name Type Units Interpretation

Presence
Vector

Byte N/A See mapping table below

2 Local
Request ID

Byte N/A Request identifier to be used
when returning confirmation to
requesting component

3 Region
Type

Byte N/A Enumeration
0: Point
1: Line
2: Polygon
3 – 255: Reserved

4 Number of
Region
Points

Short
Integer

N/A 0: Reserved
1 … 65,535

5 Region
Buffer

Float Meters

6 Feature
Class

Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – ALL

7 Deletion
Region
Point 1
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

8 Deletion
Region
Point 1
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

 … … … …
 … … … …
2n + 5 Deletion

Region
Point n
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

2n + 6 Deletion
Region
Point n
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

1

99

Table 4-20. Presence vector for delete vector knowledge store objects message
Vector to Data Field Mapping for Above Command

Vector Bit 7 6 5 4 3 2 1 0
Data Field R R R R R R 6 5

4.2.4.4 Code F220h: Query vector knowledge store objects

The Code F220h: Query Vector Knowledge Store Objects message (Table 4-21)

allows the access to objects within the vector knowledge store. Field 1 of this message is

the presence vector (Table 4-22). Fields 6, 7, and 8 are the only optional fields in this

message. When these fields are included, they further limit the scope of the query. Field

2 is a presence vector used to set the query response properties. If bit zero is clear, then

the response shall only include the first three fields of the Code F422h: Report Vector

Knowledge Store Objects message. Field 3 of this message is the Local Request

Identifier. Field 4 identifies the type of region that will be used to limit the query. The

number of vertices for this region is specified in field 5. Field 6 indicates the size of the

region buffer to use with this message. Fields 8 begins the definition of vertices of the

object query region. If this field is not present, the query scope shall be the entire

knowledge store.

Table 4-21. Query vector knowledge store objects message format
Field # Name Type Units Interpretation
1 Presence

Vector
Unsigned
Short
Integer

N/A See mapping table below

2 Local Request
ID

Byte N/A Request identifier to be used
when returning data to
requesting component

3 Query
Properties

Byte N/A Bit Field
0: Only return number of
 responses that would be
 transmitted
1 – 7: Reserved

100

Table 4-21. Continued
Field # Name Type Units Interpretation
4 Region Type Byte N/A Enumeration

0: Point
1: Line
2: Polygon
3 – 255: Reserved

5 Number of
Region Points

Unsigned
Short
Integer

N/A 0, reserved
1 … 65,535

6 Region Buffer Float Meters

7 Feature Class Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – All Feature Classes

8 Query Region
Point 1
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

9 Query Region
Point 1
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

2n + 6 Query Region
Point n
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

2n + 7 Query Region
Point n
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

Table 4-22. Presence vector for query vector knowledge store objects message

Vector to Data Field Mapping for Above Command
Vector Bit 7 6 5 4 3 2 1 0
Data Field R R R R R 8 7 6

4.2.4.5 Code F221h: Query vector knowledge store feature class metadata

The Code F221h: Query Vector Knowledge Store Feature Class Metadata message

(Table 4-23) should cause the Vector Knowledge Store to reply to the requestor with the

Code F422h: Report Vector Knowledge Store Feature Class Metadata. There is a single

101

field associated with this message. This field specifies the feature class metadata to

return in the reply. There is also an option to return metadata for all feature classes

present in the queried raster knowledge store.

Table 4-23. Query vector knowledge store feature class metadata message format
Field # Name Type Units Interpretation
1 Feature

Class
Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – All

4.2.4.6 Code F222h: Query vector knowledge store bounds

The Code F222h: Query Vector Knowledge Store Bounds message (Table 4-24) is

used to request the spatial extents of a single feature class or of all feature classes within

a vector knowledge store. The knowledge store should respond with the Code F424h:

Report Vector Knowledge Store Bounds message. The bounds are represented by two

points the represent the rectangular region that just covers all of the data within the

feature class layer or layers.

Table 4-24. Query raster knowledge store bounds message format
Field # Name Type Units Interpretation
1 Local

Request ID
Byte N/A Request identifier to be used

when returning data to
requesting component

2 Feature
Class

Unsigned
Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – All Feature Classes

4.2.4.7 Code F620h: Vector knowledge store event notification request

The Code F620h: Vector Knowledge Store Event Notification Request message is

used to establish an event triggered query within the knowledge store. Therefore, this

message is formatted exactly the same as the Code F220h: Query Vector Knowledge

102

Store Objects message. That message should be referenced for the format of this

message. Whenever the criteria established in this message are met, the raster knowledge

store should transmit the Code F820h: Vector Knowledge Store Event Notification

message with the appropriate data attached.

4.2.4.8 Code F621h: Vector knowledge store bounds change event notification
request

The Code F621h: Vector Knowledge Store Bounds Change Event Notification

Request message is used to establish an event triggered response to notify the requesting

component of when the data in a feature class extends past the bounds of the data when

the initial request was sent. When the extents of the data change, the raster knowledge

store will transmit the Code F821h: Vector Knowledge Store Bounds Change Event

Notification message.

4.2.4.9 Code F023h: Terminate vector knowledge store data transfer

This Code F023h: Terminate Vector Knowledge Store Data Transfer message is a

command class message that should cause the vector knowledge store to immediately

terminate the transfer of all current and outstanding data destined to the requesting

component. Upon termination, the raster knowledge store should send the requestor the

Code F424h: Report Vector Knowledge Store Data Transfer Termination message.

4.2.5 Vector Knowledge Store Output Message Set

Below are the messages that define the output methods for the vector version of the

world model knowledge store.

Outputs:

• The JAUS core output message set
• Code F420h: Report vector knowledge store object(s) creation
• Code F421h: Report vector knowledge store feature class metadata
• Code F422h: Report vector knowledge store objects

103

• Code F423h: Report vector knowledge store bounds
• Code F820h: Vector knowledge store event notification
• Code F821h: Vector knowledge store bounds change event notification
• Code F424h: Report vector knowledge store data transfer termination

4.2.5.1 Code F420h: Report vector knowledge store object(s) creation

The Code F420h: Report Vector Knowledge Store Object Creation message (Table

4-25) is used to confirm creation of objects in the vector knowledge store. This message

is sent only when an object creation message is requested by setting bit zero in the Code

F020h: Create Vector Knowledge Store Object message. If this bit is set, this message

will be transmitted and the local object identifier (field 1) is set to the value sent with the

Code F020h: Create Vector Knowledge Store Raster Object message.

Table 4-25. Report vector knowledge store object(s) creation message format
Field # Name Type Units Interpretation
1 Local

Request ID
Byte N/A Local request identifier sent by

creating component

4.2.5.2 Code F421h: Report vector knowledge store feature class metadata

The Code F421h: Report Vector Knowledge Store Feature Class Metadata message

(Table 4-26) allows access to feature class metadata stored within raster knowledge store.

It is transferred in response to the Code F221h: Query Vector Knowledge Store Feature

Class Metadata message. If the query message requests all feature classes, a separate

message should be sent for each feature class.

These metadata are entered using the Code F021h: Set Vector Knowledge Store

Feature Class Metadata message.

Table 4-26. Report vector knowledge store feature class metadata message format
Field # Name Type Units Interpretation
1 Feature Class Short Integer N/A Enumeration

0 … 65,535
See Feature Class Table

104

Table 4-26. Continued
Field # Name Type Units Interpretation
2 Number of String

Characters
Unsigned
Short Integer

N/A 0 … 65,535

3 Feature Class
Metadata

String N/A Variable length string

4.2.5.3 Code F422h: Report vector knowledge store objects

The Code F422h: Report Vector Knowledge Store Objects message (Table 4-27) is

sent in direct response to a Code F220h: Query Vector Knowledge Store Objects

message.

Field 1 is a presence vector that informs the receiving component as to whether or

not data are included with the message. If bit zero is set, then data should be expected

after message field 3. Field 2 of this message is Local Request Identifier sent with the

query that initiated this report message. Field 3 indicates the number of vector objects

included in the message. The data type that describes the vector objects’ attributes is

variable and is specified in fields 4. Fields 5 begins the definition of a single vector

object. The vector objects is defined by its type (point, line, or polygon), the number of

feature classes that it is assigned to, an attribute for each feature class, followed by the

global coordinates of the vertices of the object. These fields are repeated for each object

reported in this message.

Table 4-27. Report vector knowledge store objects message format
Field # Name Type Units Interpretation
1 Presence

Vector
Byte N/A Bit Field

Bit 0: If data are present after
 field 3, this bit should be
 set. This is based on
 the parameters in the
 received Query Vector
 Knowledge Store
 Objects Message.
Bits 1-7: Reserved

105

Table 4-27. Continued
Field # Name Type Units Interpretation
2 Local

Request ID
Byte N/A Request identifier to be used

when returning confirmation to
requesting component

3 Number of
Objects

Unsigned
Short
Integer

 0, reserved
1 … 65,535

4 Object 1
Type

Byte N/A Enumeration
0: Point
1: Line
2: Polygon
3 – 255: Reserved

5 Object 1
Buffer

Float Meters

6 Object 1
Feature
Class

Short
Integer

N/A Enumeration
0 … 65,534 - See Feature
 Class Table
65,535 – Reserved

7 Object 1
Feature
Class
Attribute
Data Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7: Float
8: Long Float
9: RGB (3 Bytes)
10 – 255: Reserved

8 Object 1
Feature
Class
Attribute

Varies (see
field 4)

Varies
with
Feature
Class

9 Number of
Points for
Object 1

Unsigned
Short
Integer

 0, reserved
1 … 65,535

10 Object 1
Point 1
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

106

Table 4-27. Continued
Field # Name Type Units Interpretation
11 Object 1

Point 1
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

… … … … …
… … … … …
2m + 8 Object 1

Point m
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

2m + 9 Object 1
Point m
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

2m + 10 Object n
Type

Byte N/A Enumeration
0: Point
1: Line
2: Polygon
3 – 255: Reserved

2m + 11 Object n
Buffer

Float Meters

2m + 12 Object n
Feature
Class

Short
Integer

N/A Enumeration
0 … 65,535 See Feature
 Class Table

2m + 13 Object n
Feature
Class
Attribute
Data Type

Byte N/A Enumeration
0: Byte
1: Short Integer
2: Integer
3: Long Integer
4: Unsigned Short Integer
5: Unsigned Integer
6: Unsigned Long Integer
7: Float
8: Long Float
9: RGB (3 Bytes)
10 – 255: Reserved

2m + 14 Object n
Feature
Class
Attribute

Varies (see
field 4)

Varies
with
Feature
Class

107

Table 4-27. Continued
Field # Name Type Units Interpretation
2m + 15 Number of

Points for
Object n

Unsigned
Short
Integer

 0, reserved
1 … 65,535

2m + 16 Object n
Point 1
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

2m + 17 Object n
Point 1
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

… … … … …
… … … … …
 Object n

Point k
Latitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -90
 Upper Limit = 90

 Object n
Point k
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

4.2.5.4 Code F423h: Report vector knowledge store bounds

The Code F423h: Report Vector Knowledge Store Bounds message format is

shown in Table 4-28. This message reports the bounds as a response to the Query Vector

Knowledge Store Bounds message. In this message, the knowledge store returns the two

geographic points that represent the extents of the data within a feature class layer or all

feature class layers.

Table 4-28. Report vector knowledge store bounds message format
Field # Name Type Units Interpretation
1 Southwest Point

Latitude (WGS84)
Integer Degrees Scaled Integer

 Lower Limit = -90
 Upper Limit = 90

2 Southwest Point
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

108

Table 4-28. Continued
Field # Name Type Units Interpretation
3 Northeast Point

Latitude (WGS84)
Integer Degrees Scaled Integer

 Lower Limit = -90
 Upper Limit = 90

4 Northeast Point
Longitude
(WGS84)

Integer Degrees Scaled Integer
 Lower Limit = -180
 Upper Limit = 180

4.2.5.5 Code F820h: Vector knowledge store event notification

The Code F820h: Vector Knowledge Store Event Notification message is an event

triggered message that is sent in response to the Code F620h: Vector Knowledge Store

Event Notification Request message. The format of this message is identical to that of

the Code F422h: Report Vector Knowledge Store Objects message.

4.2.5.6 Code F821h: Vector knowledge store bounds change event notification

The Code F821h: Vector Knowledge Store Bounds Change Event Notification

message is an event triggered message that is sent in response to the Code F621h: Vector

Knowledge Store Bounds Change Event Notification Request message. It is transmitted

to the requesting component each time the spatial extents of a feature class or feature

classes (as specified in the event notification request message) change. The format of

this message is identical to that of the Code F423h: Report Vector Knowledge Store

Bounds message.

4.2.5.7 Code F424h: Report vector knowledge store data transfer termination

The Code F424h: Report Vector Knowledge Store Data Transfer Termination

message notifies other JAUS components that data that were being transferred or were

going to be transferred to them has been stopped. This message is sent in response to the

Code F025h: Terminate Vector Knowledge Store Data Transfer message. It is also sent

109

whenever data transfer is interrupted due to a change in the component state as discussed

in Section 4.2.1.

The messages presented in the preceding sections present a solution to world

modeling within the context of the Joint Architecture for Unmanned Systems (JAUS).

The defined messages allow the raster and vector versions of the knowledge store to

receive and transmit formatted geospatial data. Because the underlying geometry of most

geospatial data is based on raster or vector objects, the JAUS World Model components

are able to support most types of geospatial data including those presented in Chapter 2.

CHAPTER 5
CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Our study focused on standardization of an interface between unmanned systems.

Specifically, it focused on standardizing the interface between different types of

geospatial data stores within the JAUS framework. In responding to the research

problem stated in Chapter 1, a review of relevant literature was done. Next a system of

distributed modular sensor processing units was developed. This system of modular

sensors is called the Smart Sensor Architecture. Its development laid the foundation for

the development of the world model message set presented in Chapter 4. This generic

JAUS message set was developed to allow transfer of basic forms of both raster and

vector formatted geospatial data.

The interfaces to the world model knowledge stores as introduced in Chapter 4

present a standardized method for communicating geospatial data. The application

possibilities of these messages are endless. While it is useful for single unmanned

systems for mapping its environment, it is particularly useful for collaborative robotics

tasks. For example, an unmanned system with a powerful sensor suite could be used to

map an area for obstacles. That map, or world model, could be shared with other

unmanned systems to allow them to traverse a region with minimal or no sensors;

essentially sharing the resources of another unmanned system.

It should be clear that our study in not a final solution to the question of how to

share geospatial data between multiple unmanned systems. It is a first step in a long

110

111

process of defining a standard for the growing JAUS community. The consequences of

the work presented herein could very well be far reaching indeed. Just imagine a class of

unmanned systems with a shared language – a standard method of communicating with

other unmanned systems. Unmanned systems that are able to, despite the fact that they

were developed by different vendors, interoperate with minimal effort. With JAUS, this

is becoming a reality. Our study is a significant contribution to the JAUS Working

Group’s effort to develop the next generation of intelligent JAUS systems.

5.2 Future Work

Since the problem addressed by our study is open-ended, this work must and most

certainly will continue on. There is no single best way to model or share geospatial data.

What is important is that all concerned parties reach consensus on how to do this.

Therefore the results of our study provides a base upon which the JAUS community can

build. As with any new component added to the JAUS Reference Architecture, the

component messages presented herein must be vetted by all interested parties within the

JAUS community. Only after approval by the JAUS Reference Architecture Committee

and the JAUS Working Group as a whole will it be adopted.

Chapter 4 presents two separate methods for modeling and sharing both raster and

vector geospatial data. What was not address is how to bridge the two modeling

methods. Converting vector data to raster format is trivial. This simply requires the

projection of the points along the edges of the vector object into a grid. The grid should

be of high enough resolution to accurately represent the vector objects. The more

difficult side of this bridge is the conversion from raster to vector. Because transfer and

storage of raster data is very expensive, this is of particular importance when it comes

sharing data between unmanned systems. Raster data requires a large amount of

112

bandwidth during transmission. For example, even when transmitting a large amount of

raster formatted geospatial data areas have similar values, each cell must still be

transmitted. A possible approach to the raster to vector conversion problem is the use of

the Level Set Method developed by Sethian in [27]. This approach will be explored as a

possible solution to this problem.

Another future extension for the standard presented in Chapter 4 is the addition of

support for more projected coordinate systems. For the sake of simplicity, this message

set requires all global coordinates to be based on the World Geodetic System 1984

(WGS) and the projected coordinate system to be based on the Universal Transverse

Mercator projection. As discussed in Chapter 2, there are benefits to use of different

types of projected coordinate systems. UTM is a good general purpose transformation,

but system developers may want or need to use another projection that preserves features

that are most important to them. The standard should grow to not only support, but allow

systems to distinguish and convert of data from different projections.

One of the most often discussed issue with JAUS is that is not a very flexible or

extensible architecture. As this document attempts a first step at bridging the GIS and

Unmanned Systems communities, it is expected that the World Model subcommittee of

JAUS will make an effort to bring in members of the GIS community. There is a wealth

of knowledge and contributions to be gained from both the unmanned systems and GIS

communities. This is perhaps the most important continuation plan for this work.

REFERENCES

American National Standards Institute, Spatial Data Transfer Standard (SDTS)
Part 1: Logical Specification. Washington, D.C.: American National Standards
Institute, 1997.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

American National Standards Institute, Spatial Data Transfer Standard (SDTS)
Part 2: Spatial Features. Washington, D.C.: American National Standards
Institute, 1997.

American National Standards Institute, Spatial Data Transfer Standard (SDTS)
Part 3: ISO 8211 Encoding. Washington, D.C.: American National Standards
Institute, 1997.

American National Standards Institute, Spatial Data Transfer Standard (SDTS)
Part 4: Topological Vector Profile. Washington, D.C.: American National
Standards Institute, 1997.

American National Standards Institute, Spatial Data Transfer Standard (SDTS)
Part 6: Point Profile. Washington, D.C.: American National Standards Institute,
1998.

American National Standards Institute, Spatial Data Transfer Standard (SDTS)
Part 5: Raster Profile. Washington, D.C.: American National Standards Institute,
1999.

P. Bolstad, GIS Fundamentals: A First Text on Geographic Information Systems.
White Bear Lake, MN: Eider Press, 2002.

J. Borenstein, "The Vector Field Histogram - Fast Obstacle Avoidance for Mobile
Robots," IEEE Journal of Robotics and Automation, vol. 7, no. 3, pp. 278-288,
1991.

K. Brown, Datums and Projections: A Brief Guide, United States Geological
Survey Center for Biological Informatics. Reston, VA: United States Geological
Survey, 1999.

M. Crosetto, B. Crippa, "Optical and Radar Data Fusion for DEM Generation,"
IAPRS GIS Between Vision and Applications, vol. 32, no. 4, pp. 128-134,
Stuttgart, Germany, 1998..

S. Cox, P. Daisey, R. Lake, C. Portele, A. Whiteside, OpenGIS Geography
Markup Language Implementation Specification, OpenGIS Consortium, Inc.,
2004.

G. Dudeck, M. Jenkin, Computational Principles of Mobile Robotics. New York,
NY: Cambridge University Press, 2002.

113

114

[13]

[14]
[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

A. Elfes, "Using Occupancy Grids for Mobile Robot Perception and Navigation,"
Computer, vol. 22, no. 6, pp. 46-57, 1989.

ESRI, Understanding Map Projections: GIS by ESRI, ESRI. Redlands, CA, 2004.

T. Hong, M. Abrams, T. Chang, M. Shneier, "An Intelligent World Model for
Autonomous Off-Road Driving." Gaithersburg, MD: NIST Intelligent Systems
Division, 2001.

JAUS Working Group, Joint Architecture for Unmanned Systems (JAUS) Version
3.1, Volume 2, The Joint Architecture for Unmanned Systems.
http://www.jauswg.org, April 2004.

R. Lake, Enabling the Geo-spatial Web, Galdos Systems Inc. Vancouver, CA,
2001.

A. Meystel, J. Albus, Intelligent Systems: Architecture, Design, and Control. New
York, NY: John Wiley & Sons, 2002.

R. Murphy, Introduction to AI Robotics. Cambridge, MA: The MIT Press, 2000.

D. Murray, J. Little, "Using Real-Time Stereo Vision for Mobile Robot
Navigation," Autonomous Robots, vol. 8, no. 2, pp. 151-171, 2000.

O. R. Musin, "Towards 3/4-D GIS." Moscow, Russia: Moscow State University,
Department of Cartography and Geoinformatics, 1998.

D. Novick, "Implementation of a Sensor Fusion-Based Object Detection
Component for an Autonomous Outdoor Vehicle," Doctor of Philosophy
Dissertation. Department of Mechanical Engineering: University of Florida, 2002.

A. Pasha, "Path Planning for Nonholonomic Vehicles and Its Application to
Radiation Environments," Master of Science Thesis. Department of Mechanical
Engineering: University of Florida, 2003.

J. Postel, User Datagram Protocol, Request for Comments 768, USC Information
Sciences Institute. Marina del Ray, CA, August 1980.

P. Rigaux, M. Scholl, A. Voisard, Spatial Databases with Application to GIS. San
Francisco, CA: Morgan Kaufmann, 2002.

J. Rosenblatt, "DAMN: A Distributed Architecture for Mobile Navigation,"
Doctor of Philosophy Dissertation. Robotics Institute: Carnegie Mellon
University, 1997.

J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge, UK: Cambridge University Press, 1999.

Sick, Inc., LMS200/LMS211/LMS220/LMS221/LMS291 Laser Measurement
Systems Technical Description, Sick, Inc. Minneapolis, MN, 2003.

United States Geological Survey, U.S. GeoData Digital Line Graphs Fact Sheet.
Reston, VA: United States Geological Survey, 1996.

http://www.jauswg.org/

115

United State Geological Survey, National Mapping Division, National Mapping
Program Technical Instructions: Part 1 General Standards for Digital Elevation
Models. Reston, VA: United States Geological Survey, 1997.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

United States Geological Survey, Digital Raster Graphics Fact Sheet. Reston,
VA: United States Geological Survey, 1999.

United States Geological Survey, Spatial Data Transfer Standard (SDTS) Fact
Sheet. Reston, VA: United States Geological Survey, 1999.

United States Geological Survey, U.S. GeoData Digital Elevation Models Fact
Sheet. Reston, VA: United States Geological Survey, 2000.

United States Geological Survey, U.S. GeoData Digital Orthophoto Quadrangles
Fact Sheet. Reston, VA: United States Geological Survey, 2001.

Videre Design, STH-MD1/-C Stereo Head User's Manual, Videre Design. Menlo
Park, CA, 2001.

Wikipedia Contributors, "Sea Level," http://en.wikipedia.org/wiki/Sea_level.
Wikipedia: The Free Encyclopedia. (December 15, 2004).

http://en.wikipedia.org/wiki/Sea_level

BIOGRAPHICAL SKETCH

Carl P. Evans III was born on May 15, 1978, in Salisbury, Maryland. As a child

and teenager, he was very inquisitive and had an appreciation for science and technology

(particularly robotics, albeit toy robotics). He was first exposed to programming when

his grandmother purchased a Commodore 64 computer for him. The computer came with

very little software so, out of necessity, he wrote his own. Building on the vast

experience he gained writing Commodore 64 code, Mr. Evans took 2 years of

programming in high school. This work culminated in Carl’s Operating System (COS) a

PASCAL-developed graphical user interface that ran on top of Microsoft DOS.

Motivated by his desire to develop his own version of Short Circuit’s Johnny Five,

Mr. Evans decided to pursue a degree in engineering. Not knowing which field of

engineering (electrical or mechanical) he wanted to study, in 1996 Mr. Evans enrolled in

the unique Electromechanical Engineering (BELM) program at Wentworth Institute of

Technology in Boston, MA (the only ABET-accredited interdisciplinary

Electromechanical Engineering program in the United States). A campus leader, Mr.

Evans served as chapter president of ASME and IEEE, Institute President’s Host, and

Resident Assistant. In 2001, Mr. Evans graduated, cum laude, with his B.S. degree and

gave the student commencement address to his fellow graduates.

As part of the WIT Electromechanical Engineering program’s graduation

requirements, Mr. Evans worked two co-op semesters, to supplement his studies with

practical experience. He earned the honor of being an engineer assistant at Foster-Miller,

116

117

Inc., in Waltham, MA. At FMI, the range of Mr. Evans’ work was as broad as his

education. As a student, he earned the level of respect and responsibility granted to Staff

Engineers. Upon graduation, Mr. Evans was granted a double-promotion to the position

of Design Engineer, bypassing the position of Staff Engineer. To this day, his

contributions live on at Foster-Miller and are helping in the current “war” on terrorism.

In January of 2002, Mr. Evans joined Dr. Carl Crane at the University of Florida’s

Center for Intelligent Machines and Robotics. While at the University of Florida, he was

a member of the Unmanned Systems research team, funded by the Air Force Research

Laboratory (Panama City, FL). He was a member of the CIMAR DARPA Grand

Challenge team and led the perception team. In August of 2005, he graduated with his

Master of Science degree.

A Commonwealth of Massachusetts’ Engineer Intern since 2001, Mr. Evans plans

to sit for the Professional Engineers’ (PE) exam with a concentration in Electrical

Engineering. Mr. Evans is a first-generation college graduate. He owes all that he has

achieved to his loving grandparents, Lottie and James Patterson. His future educational

plans include attending law school with an ultimate goal of one day becoming a

politician. In June 2004, Mr. Evans joined Applied Perception, Inc. (API) in Wexford,

PA as a Senior Engineer. At API he will continue his involvement with JAUS and the

development of perception systems, world modeling methods, and collaborative

technologies for unmanned systems.

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION AND RESEARCH PROBLEM
	1.1 Introduction
	1.2 Research Problem

	REVIEW OF RELEVANT LITERATURE
	2.1 Joint Architecture for Unmanned Systems (JAUS)
	2.1.1 Tenets of JAUS
	2.1.2 System Structure of JAUS
	2.1.3 World Model Subcommittee for JAUS

	2.2 Real-Time World Modeling Methods
	2.2.1 Raster Occupancy Grid
	2.2.2 Real Time Terrain Mapping
	2.2.3 Raster Traversability Grid

	2.3 A Priori World Modeling Methods
	2.4 Geographic Modeling Methods
	2.4.1 Global Coordinate Systems
	2.4.2 Projected Coordinate Systems
	2.4.3 Universal Transverse Mercator projection

	2.5 Georeferenced World Model Data
	2.5.1 Raster Data Stores
	2.5.2 Vector Data Stores

	2.6 Distributed World Modeling Methods
	2.6.1 Spatial Data Transfer Standard (SDTS)
	2.6.2 Geography Markup Language

	SMART SENSORS
	3.1 Smart Sensor Architecture
	3.2 Smart Sensor Architecture Components
	3.2.1 Smart Sensor Component
	3.2.2 Smart Sensor Arbiter Component
	3.2.3 Reactive Planner Component

	3.3 Smart Sensor Messaging Architecture
	3.3.1 Smart Sensor Architecture Message Header
	3.3.2 Smart Sensor Architecture Message Set
	3.3.2.1 Report vehicle state message
	3.3.2.2 Report traversability grid update message
	3.3.2.3 Report region clutter index message

	3.3.3 Smart Sensor Architecture Network Communications

	3.4 Smart Sensor Implementation
	3.4.1 Abstraction of Smart Sensor Core Functionality
	3.4.2 Base Smart Sensor

	3.5 Smart Stereo Vision Sensor Implementation
	3.5.1 Stereo vision Hardware
	3.5.2 Stereo Vision Software
	3.5.3 Smart Stereo Vision Sensor

	3.6 Use of Obstacle Detection and Free Space Sensors
	3.7 Smart Sensor Arbiter Implementation

	JAUS WORLD MODEL KNOWLEDGE STORES
	4.1 Observations and Recommendations
	4.1.1 Raster and Vector Object Representation

	4.2 World Model Knowledge Store Message Set
	4.2.1 JAUS Core Input and Output Message Sets
	4.2.2 Raster Knowledge Store Input Message Set
	4.2.2.1 Code F000h: Create raster knowledge store object
	4.2.2.2 Code F001h: Set raster knowledge store feature class metadata
	4.2.2.3 Code F002h: Modify raster knowledge store object (cell update)
	4.2.2.4 Code F003h: Modify raster knowledge store object (grid update)
	4.2.2.5 Code F004h: Delete raster knowledge store objects
	4.2.2.6 Code F200h: Query raster knowledge store objects
	4.2.2.7 Code F201h: Query raster knowledge store feature class metadata
	4.2.2.8 Code F202h: Query raster knowledge store bounds
	4.2.2.9 Code F600h: Raster knowledge store event notification request
	4.2.2.10 Code F601h: Raster knowledge store bounds change event notification request
	4.2.2.11 Code F005h: Terminate raster knowledge store data transfer

	4.2.3 Raster Knowledge Store Output Message Set
	4.2.3.1 Code F400h: Report raster knowledge store object creation
	4.2.3.2 Code F401h: Report raster knowledge store feature class metadata
	4.2.3.3 Code F402h: Report raster knowledge store objects (cell update)
	4.2.3.4 Code F403h: Report raster knowledge store objects (grid update)
	4.2.3.5 Code F404h: Report raster knowledge store bounds
	4.2.3.6 Code F800h: Raster knowledge store event notification (cell update)
	4.2.3.7 Code F801h: Raster knowledge store event notification (grid update)
	4.2.3.8 Code F802h: Raster knowledge store bounds change event notification
	4.2.3.9 Code F405h: Report raster knowledge store data transfer termination

	4.2.4 Vector Knowledge Store Input Message Set
	4.2.4.1 Code F020h: Create vector knowledge store objects
	4.2.4.2 Code F021h: Set vector knowledge store feature class metadata
	4.2.4.3 Code F022h: Delete vector knowledge store objects
	4.2.4.4 Code F220h: Query vector knowledge store objects
	4.2.4.5 Code F221h: Query vector knowledge store feature class metadata
	4.2.4.6 Code F222h: Query vector knowledge store bounds
	4.2.4.7 Code F620h: Vector knowledge store event notification request
	4.2.4.8 Code F621h: Vector knowledge store bounds change event notification request
	4.2.4.9 Code F023h: Terminate vector knowledge store data transfer

	4.2.5 Vector Knowledge Store Output Message Set
	4.2.5.1 Code F420h: Report vector knowledge store object(s) creation
	4.2.5.2 Code F421h: Report vector knowledge store feature class metadata
	4.2.5.3 Code F422h: Report vector knowledge store objects
	4.2.5.4 Code F423h: Report vector knowledge store bounds
	4.2.5.5 Code F820h: Vector knowledge store event notification
	4.2.5.6 Code F821h: Vector knowledge store bounds change event notification
	4.2.5.7 Code F424h: Report vector knowledge store data transfer termination

	CONCLUSIONS AND FUTURE WORK
	5.1 Conclusions
	5.2 Future Work

	REFERENCES
	BIOGRAPHICAL SKETCH
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION AND RESEARCH PROBLEM
	1.1 Introduction
	1.2 Research Problem

	REVIEW OF RELEVANT LITERATURE
	2.1 Joint Architecture for Unmanned Systems (JAUS)
	2.1.1 Tenets of JAUS
	2.1.2 System Structure of JAUS
	2.1.3 World Model Subcommittee for JAUS

	2.2 Real-Time World Modeling Methods
	2.2.1 Raster Occupancy Grid
	2.2.2 Real Time Terrain Mapping
	2.2.3 Raster Traversability Grid

	2.3 A Priori World Modeling Methods
	2.4 Geographic Modeling Methods
	2.4.1 Global Coordinate Systems
	2.4.2 Projected Coordinate Systems
	2.4.3 Universal Transverse Mercator projection

	2.5 Georeferenced World Model Data
	2.5.1 Raster Data Stores
	2.5.2 Vector Data Stores

	2.6 Distributed World Modeling Methods
	2.6.1 Spatial Data Transfer Standard (SDTS)
	2.6.2 Geography Markup Language

	SMART SENSORS
	3.1 Smart Sensor Architecture
	3.2 Smart Sensor Architecture Components
	3.2.1 Smart Sensor Component
	3.2.2 Smart Sensor Arbiter Component
	3.2.3 Reactive Planner Component

	3.3 Smart Sensor Messaging Architecture
	3.3.1 Smart Sensor Architecture Message Header
	3.3.2 Smart Sensor Architecture Message Set
	3.3.2.1 Report vehicle state message
	3.3.2.2 Report traversability grid update message
	3.3.2.3 Report region clutter index message

	3.3.3 Smart Sensor Architecture Network Communications

	3.4 Smart Sensor Implementation
	3.4.1 Abstraction of Smart Sensor Core Functionality
	3.4.2 Base Smart Sensor

	3.5 Smart Stereo Vision Sensor Implementation
	3.5.1 Stereo vision Hardware
	3.5.2 Stereo Vision Software
	3.5.3 Smart Stereo Vision Sensor

	3.6 Use of Obstacle Detection and Free Space Sensors
	3.7 Smart Sensor Arbiter Implementation

	JAUS WORLD MODEL KNOWLEDGE STORES
	4.1 Observations and Recommendations
	4.1.1 Raster and Vector Object Representation

	4.2 World Model Knowledge Store Message Set
	4.2.1 JAUS Core Input and Output Message Sets
	4.2.2 Raster Knowledge Store Input Message Set
	4.2.2.1 Code F000h: Create raster knowledge store object
	4.2.2.2 Code F001h: Set raster knowledge store feature class metadata
	4.2.2.3 Code F002h: Modify raster knowledge store object (cell update)
	4.2.2.4 Code F003h: Modify raster knowledge store object (grid update)
	4.2.2.5 Code F004h: Delete raster knowledge store objects
	4.2.2.6 Code F200h: Query raster knowledge store objects
	4.2.2.7 Code F201h: Query raster knowledge store feature class metadata
	4.2.2.8 Code F202h: Query raster knowledge store bounds
	4.2.2.9 Code F600h: Raster knowledge store event notification request
	4.2.2.10 Code F601h: Raster knowledge store bounds change event notification request
	4.2.2.11 Code F005h: Terminate raster knowledge store data transfer

	4.2.3 Raster Knowledge Store Output Message Set
	4.2.3.1 Code F400h: Report raster knowledge store object creation
	4.2.3.2 Code F401h: Report raster knowledge store feature class metadata
	4.2.3.3 Code F402h: Report raster knowledge store objects (cell update)
	4.2.3.4 Code F403h: Report raster knowledge store objects (grid update)
	4.2.3.5 Code F404h: Report raster knowledge store bounds
	4.2.3.6 Code F800h: Raster knowledge store event notification (cell update)
	4.2.3.7 Code F801h: Raster knowledge store event notification (grid update)
	4.2.3.8 Code F802h: Raster knowledge store bounds change event notification
	4.2.3.9 Code F405h: Report raster knowledge store data transfer termination

	4.2.4 Vector Knowledge Store Input Message Set
	4.2.4.1 Code F020h: Create vector knowledge store objects
	4.2.4.2 Code F021h: Set vector knowledge store feature class metadata
	4.2.4.3 Code F022h: Delete vector knowledge store objects
	4.2.4.4 Code F220h: Query vector knowledge store objects
	4.2.4.5 Code F221h: Query vector knowledge store feature class metadata
	4.2.4.6 Code F222h: Query vector knowledge store bounds
	4.2.4.7 Code F620h: Vector knowledge store event notification request
	4.2.4.8 Code F621h: Vector knowledge store bounds change event notification request
	4.2.4.9 Code F023h: Terminate vector knowledge store data transfer

	4.2.5 Vector Knowledge Store Output Message Set
	4.2.5.1 Code F420h: Report vector knowledge store object(s) creation
	4.2.5.2 Code F421h: Report vector knowledge store feature class metadata
	4.2.5.3 Code F422h: Report vector knowledge store objects
	4.2.5.4 Code F423h: Report vector knowledge store bounds
	4.2.5.5 Code F820h: Vector knowledge store event notification
	4.2.5.6 Code F821h: Vector knowledge store bounds change event notification
	4.2.5.7 Code F424h: Report vector knowledge store data transfer termination

	CONCLUSIONS AND FUTURE WORK
	5.1 Conclusions
	5.2 Future Work

	REFERENCES
	BIOGRAPHICAL SKETCH

